

க.பொ.த. (உயர் தரம்) இரசாயனவியல்

தரம் 12

வள நூல்

விஞ்ஞானத் திணைக்களம் விஞ்ஞானம் மற்றும் தொழினுட்ப பீடம் தேசிய கல்வி நிறுவகம் www.nie.lk

க.பொ.த (உயர் தரம்) இரசாயனவியல் தரம் 12

வளநூல்

சேதன இரசாயனவியல்

அலகு	7	:	சேதன இரசாயனத்தின் அடிப்படை எண்ணக்கருக்கள்
அலகு	8	:	ஐதரோகாபன்களும் அலசன்சேர் ஐதரோகாபன்களும்
அலகு	9	:	ஒட்சிசனைக் கொண்டுள்ள சேதனச் சேர்வைகள்
அலகு	10	:	நைதரசன் உடைய சேதனச் சேர்வைகள்

விஞ்ஞானத் துறை விஞ்ஞான தொழினுட்பப் பீடம் தேசிய கல்வி நிறுவகம் www.nie.lk

இரசாயனவியல்

வளநூல் தரம் 12

© தேசிய கல்வி நிறுவகம் முதலாம் பதிப்பு - 2022 இரண்டாம் பதிப்பு - 2023

விஞ்ஞானத் துறை விஞ்ஞான தொழினுட்பப் பீடம் தேசிய கல்வி நிறுவகம் இலங்கை.

வெளியீடு: அச்சகம் தேசிய கல்வி நிறுவகம் மகரகம இலங்கை.

பணிப்பாளர் நாயகம் அவர்களின் செய்தி

தரமான கல்வி விருத்திகாகக் காலத்திற்குக் காலம் தேசிய கல்வி நிறுவகம் படிநிலை வாய்ப்புக்களை எடுத்து வருகின்றது. பொருத்தமான பாடங்களுக்கான வள-நூல் தயாரித்தலும் இவ்வாறான முன்னெடுப்புகளில் ஒன்றாகும்.

தேசிய கல்வி நிறுவகத்தினால் வெற்றிகரமாக அமுல்படுத்தப்பட்ட தரங்கள் 12 மற்றும் 13 இற்குரிய பாடத்திட்டம் மற்றும் ஆசிரியர் வழிகாட்டியுடன் ஒருங்கிணைக்கப்பட்ட இவ்வாசிப்புநூல் மேலதிகமாக வடிவமைக்கப்பட்டுள்ளது.

எங்களது நம்பிக்கையின்படி மதிப்பான பாடத்திட்டத்திற்கு அவசியமான ஆதாரத்தண்டாக இம் மேலதிகமான நூல் பொருத்தமான பாடஅணியில் கற்றலுக்கு அனுசரணை வழங்கும்.

இந்தத் துணைச்சாதனத்தை உங்கள் கைகளில் கிடைக்கச் செய்வதற்குக் கல்விசார் வளப் பங்களிப்பை வழங்கிய தேசிய கல்வி நிறுவக அதிகாரிகள் மற்றும் வெளிவாரிப் புலமைசார் வளவாளர்கள் ஆகியோருக்கு எனது பாராட்டுக்களைத் தெரிவித்துக் கொள்கிறேன்.

கலாநிதி.(திருமதி) ரி. ஏ. ஆர். ஐ. குணசேகர பணிப்பாளர் நாயகம் தேசிய கல்வி நிறுவகம் மகரகம.

பணிப்பாளர் அவர்களின் செய்தி

2017 ல் கலைத்திட்ட மறுசீரமைப்பு இலங்கையின் க.பொ.த (உ.த) கல்வித் தொகுதியில் நடைமுறையில் உள்ளது. அதாவது மேம்படுத்தப்பட்ட கலைத்திட்டம் அமுல்படுத்தப்பட்டுள்ளது.

இதன் விளைவாக க.பொ.த (உ.த) இல் பௌதிகவியல், இரசாயனவியல் மற்றும் உயிரியல் பாடங்களின் உள்ளடக்கம், வடிவம், கலைத்திட்டக் கூறுகள் என்பனவற்றில் மீளாய்வு செய்யப்பட்டுள்ளது. இத் தொடர்ச்சியான மாற்றத்தால் கற்றல் - கற்பித்தல் முறையியல், மதிப்பீடு மற்றும் கணிப்பீட்டில் குறிப்பிடத்தக்க மாற்றங்கள் எதிர்பார்க்கப்பட்டன. கலைத்திட்டத்தில் பாடமட்ட அளவில் பெருமளவில் குறைக்கப்பட்டுள்ளது மற்றும் கற்றல் - கற்பித்தல் ஒழுங்கிலும் பல்வேறு மாற்றங்கள் செய்யப்பட்டுள்ளன. பழைய கலைத்திட்டத் துணையாகிய ஆசிரிய ஆலோசனை வழிகாட்டிக்கு மாற்றீடாக ஆசிரியருக்கான வள நூல் அறிமுகப்படுத்தப்பட்டுள்ளது.

ஆசிரியர் ஆலோசனை வழிகாட்டி கற்க வேண்டியவை என எதிர்பார்க்கப்படுகின்ற பாடவிடயத்தை நேர்கோட்டு வடிவில் கொண்டுள்ளன. ஆயினும் புதிய ஆசிரியர் வள நூலில் எவ்விதமான பாடவிடயமும் உள்ளடக்கப்படவில்லை. இருப்பினும் கற்றல் செயற்பாடுகள் மற்றும் மதிப்பீட்டு நடவடிக்கைகளுக்கான மேலோட்டமான விளக்கங்கள் வழங்கப்பட்டுள்ளன. ஆசிரியர் வள நூல் திட்டமான பாடப்பரப்பு எல்லையைக் கற்றற் பேறுகளின் மூலம் குறித்துக் காட்டுகின்றது. அனைத்துக் காரணிகளையும் முழுமையாகச் சுட்டிக் காட்ட ஆசிரியர் வள நூல் போதாது. எனவே பாடஉள்ளடக்கத்தை எளிதாக விளக்குவதற்கு வள நூல் தேவைப்படுகின்றது. இவற்றைப் பூரணப்படுத்தவேண்டிய தேவைக்கேற்ப இந்தப் புத்தகம் உங்களுக்காகத் தயாரிக்கப்பட்டுள்ளது.

முன்னைய கலைத்திட்ட நடைமுறையில் உயர் தர விஞ்ஞானப் பாட முன்னேற்றத்திற்கு அங்கீகரிக்கப்பட்ட நியம சர்வதேச ஆங்கிலமொழிப் புத்தகங்கள் பயன்படுத்தப்பட்டன. ஆனால் பாடவிடயம் தொடர்பான குழப்பநிலையும் உள்ளூர் கலைத்திட்டஎல்லைதொடர்பானபிரச்சினைகளும் இங்குகாணப்பட்டன. அந்தப் புத்தங்களைப் பயன்படுத்துதல் ஆசிரியர்களுக்கும் மாணவர்களுக்கும் இலகுவானவிடயமாக இருக்கவில்லை.

இவ் வள நூல் மாணவர்கள் தமதுதாய் மொழியில் உள்ளூர் கலைத்திட்டத்திற்கு உட்பட்டதாகக் கற்பதற்கான வாய்ப்புக் கிட்டியுள்ளது. அத்துடன் ஆசிரியர்கள் மற்றும் மாணவர்கள் ஆகிய இரு தரப்பினர்களுக்கும் கலைத்திட்ட எதிர்பார்பிற்கு அமைவாக நம்பகமான தகவல்களைப் பெறமுடிகின்றது. ஏனைய பிரசுரிப்பு நிலையங்கள், மேலதிக வகுப்புக்களை நாடவேண்டிய அவசியமில்லை.

இந்தப் புத்தகம் நிபுணத்துவ ஆசிரியர்கள் மற்றும் பல்கலைக்கழக விரிவுரையாளர்களால் தயாரிக்கப்பட்டுப் பின்னர் கலைத்திட்டக் குழு,தேசிய கல்வி நிறுவக கல்விசார் அலுவலகர் சபை மற்றும் தேசிய கல்வி நிறுவக பேரவை என்பனவற்றினால் அனுமதிக்கப்பட்டுள்ளது. எனவே இந்நூல் உயர் நியமத்திற்கு உரித்தான அங்கீகரிக்கப்பட்ட உள்ளீடாகும்.

திரு. A. D. A. டீ சில்வா பணிப்பாளர், விஞ்ஞானத்துறை, தேசிய கல்வி நிறுவகம்.

கலைத்திட்டக் குழு

வழிகாட்டல்: **கலாநிதி. (திருமதி). ரி. ஏ. ஆர். ஜே. குணசேகர,** பணிப்பாளர் நாயகம், தேசிய கல்வி நிறுவகம்.

மேற்பார்வை:

கலாநிதி. A. D. A. டி சில்வா, பணிப்பாளர், விஞ்ஞானத்துறை, தேசிய கல்வி நிறுவகம்.

திரு. **R. S. J. P. உடுப்பொறுவ,** முன்னாள் பணிப்பாளர், விஞ்ஞானத்துறை, தேசிய கல்வி நிறுவகம்.

பாடத் தலைமைத்துவம்**: திருமதி. M. S. விக்கிரமசிங்க,** உதவி விரிவுரையாளர், விஞ்ஞானத்துறை, தேசிய கல்வி நிறுவகம்.

உள்ளகப் பதிப்புக் குழு: **திரு.L. K. வடுகே,** சிரேஷ்ட விரிவுரையாளர், விஞ்ஞானத்துறை.

திரு. V. இராஜுதேவன், உதவி விரிவுரையாளர், விஞ்ஞானத்துறை.

திருமதி. G. G.P. S. பெரேரா

உதவி விரிவுரையாளர், விஞ்ஞானத்துறை.

	எழுத்தாளர் குழு:
பேராசிரியர். А.М . அபயசேகரர	- எமிரேட்ஸ் பேராசிரியர், இரசாயனத்துறை,
	றீ ஜயவர்த்தனபுரப் பல்கலைக்கழகம்.
பேராசிரியர்.G.M.K.B. குணஷெரத்	- சிரேஷ்ட பேராசிரியர், இரசாயனத்துறை, பிரதி உபவேந்தர், இலங்கை திறந்த பல்கலைக் கழகம்.
பேராசிரியர். வஜிரா புலகப்பிட்டிய	- பேராசிரியர், இரசாயனத்துறை,
	ருகுணுப் பல்கலைக்கழகம்.

வெளியகப் பதிப்புக் குழு:

பேராசிரியர். S. P. தெரணியகல	- சிரேஷ்ட பேராசிரியர், இரசாயனத்துறை,
	றீ ஜயவர்த்தனபுரப் பல்கலைக்கழகம்.
பேராசிரியர். M. D. P. டி கொஸ்தா	- சிரேஷ்ட பேராசிரியர், இரசாயனத்துறை,
	கொழும்புப் பல்கலைக்கழகம்.
திரு. K. D. பந்துல குமார	- உதவி ஆணையாளர்,
	கல்வி வெளியீட்டுத் திணைக்களம், கல்வி அமைச்சு.

திருமதி. தீபிகா நெத்சிங்ஹ	- ஆசிரிய ஆலோசகர் (ஓய்வு),
	பெண்கள் கல்லூரி, கொழும்பு - 07.
திருமதி. முடித அத்துகோரள	- சிரேஷ்ட ஆசிரியர், பிரஜாபதி மகளிர் வித்தியாலயம்,
	ஹொரண.
திரு. S. தில்லைநாதன்	- சிரேஷ்ட ஆசிரியர்,
	இந்து மகளிர் கல்லூரி, கொழும்பு.
செல்வி. S. வேலுப்பிள்ளை	- சிரேஷ்ட ஆசிரியர் (ஓய்வு),
	இந்து மகளிர் கல்லூரி, கொழும்பு.
திருமதி. N. திருநாவுக்கரசு	- சிரேஷ்ட ஆசிரியர் (ஓய்வு),
	இந்துக் கல்லூரி, கொழும்பு.
செல்வி. S. இராஜதுரை	- சிரேஷ்ட ஆசிரியர் (ஓய்வு),
	புனித பீற்றேர்ஸ் கல்லூரி, கொழும்பு.
செல்வி. C. A. N. பெரேரா	- சிரேஷ்ட ஆசிரியர்,
	இளவரசர் சாள்ஸ் கல்லூரி, மொரட்டுவ.
திருமதி. W.K.W.D. சாலிகா மாதவி	- சிரேஷ்ட ஆசிரியர்,
	முஸ்லிம் மகளிர் கல்லூரி, கொழும்பு.
திருமதி. H.M.D.D. தீபிகா மெனிகே	- சிரேஷ்ட ஆசிரியர்,
	விகாரமகாதேவி மகளிர் வித்தியாலயம், கிரிபத்கொட.

மொழிச் செம்மையாக்கம்:

திரு. த. முத்துக்குமாரசாமி,

கல்வி அலுவல்கள் சபை, தேசிய கல்வி நிறுவகம்.

முன்அட்டையும் கணினியாக்கமும்: செல்வி. கமலவேணி கந்தையா, தேசிய கல்வி நிறுவகம்.

அனுசரணை:

திருமதி. பத்மா வீரவர்த்தன திரு. மங்கள வெல்பிட்டிய திரு. றஞ்சித் தயவன்ச

உள்ளடக்கம்

பக்கம்

பணிப்பாளர் நாயகத்தின் செய்தி பணிப்பாளரின் செய்தி கலைத்திட்டக் குழு உள்ளடக்கம்	iii iv v-vi vii-xi
அலகு 7: சேதன இரசாயனத்தின் அடிப்படை எண்ணக்கருக்கள்	
 1.1 அன்றாட வாழ்க்கையில் சேதன இரசாயனம் 1.1.1 காபன் ஏன் பெருமளவு எண்ணிக்கை சேதனச் சேர்வைகளைப் பரந்த கட்டமைப்பு வேற்றுமையுடன் உருவாக்குகின்றது? காபனின் ஒப்பற்ற தன்மை 	1 - 3
 1.2 தொழிற்பாட்டுக் கூட்டங்கள் தொடர்பான சேதனச் சேர்வைகளின் பல்வகையை 1.2.1 பல்லின அணுக்களையுடைய தொழிற்பாட்டுக் கூட்டங்களைக் கொண்ட சேர்வைகளின் இனங்கள் 1.2.1.1 அற்ககோல்கள் 1.2.1.2 ஈதர்கள் 1.2.1.3 அலிடிகைட்டுகள் 1.2.1.4 கீற்றோன்கள் 1.2.1.5 அற்கைல் ஏலைட்டுகள் 1.2.1.6 காபொட்சிலிக்கு அமிலங்கள் 1.2.1.7 அமில ஏலைட்டுகள், எசுத்தர்கள், ஏமைட்டுகள் (காபொட்சிலிக்கு அமிலங்களின் பெறுதிகள்) 1.2.1.8 அமைன்கள் 	4 - 7
 1.3 சேதனச் சேர்வைகளின் IUPAC பெயரீடு 1.3.1 IUPAC பெயரீடு 1.3.2 அற்கேன் ஐதரோக்காபன்கள் 1.3.3 கிளைச் சங்கிலியுடைய அற்கேன்களின் பெயரீடு 1.3.4 அற்கீன், அற்கைன் ஐதரோக்காபன்களின் பெயரீடு 1.3.5 ஐதரோக்காபன்கள் தவிர்ந்த சேர்வைகளின் IUPAC பெயரீடு 1.3.6 ஒன்றிற்கு மேற்பட்ட தொழிற்பாட்டுக் கூட்டத்தையுடைய சேர்வைகளின் IUPAC பெயரீடு 	8 - 22
 1.4 சமபகுதிச் சேர்வு 1.4.1 கட்டமைப்புச் சமபகுதிச் சேர்வு சங்கிலிச் சமபகுதியங்கள் நிலைச் சமபகுதியங்கள் தொழிற்பாட்டுக் கூட்டச் சமபகுதியங்கள் 1.4.2 திண்மத் தோற்றச் சமபகுதியச் சேர்வு ஈர்வெளிமையச் சமபகுதியங்கள் எதிருருக்கள் 	23 - 28

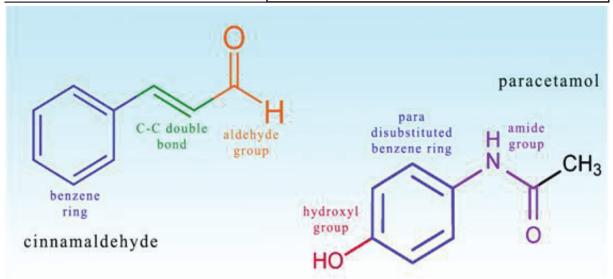
அலகு 8: ஐதரோகாபன்களும் அலசன்சேர் ஐதரோகாபன்களும் 2.1 அலிபற்றிக் ஐதரோகாபன்களின் கட்டமைப்புக்கள், 29 - 37 பௌதீக இயல்புகள் மற்றும் பிணைப்புகளின் தன்மை 2.1.1 அற்கேன் ஐதரோகாபன்களின் இயல்புகள் 2.1.2 அற்கேன் ஐதரோகாபன்களின் கட்டமைப்புக்கள் 2.1.3 அற்கீன் மற்றும் அற்கைன் ஐதரோகாபன்களின் இயல்புகள் 2.1.4 அற்கீன்களின் கட்டமைப்புக்கள் 2.1.5 அற்கைன்களின் கட்டமைப்புக்கள் 2.2 கட்டமைப்புக்களின் அடிப்படையில் அற்கேன்கள், அற்கீன்கள் மற்றும் 28 - 46 அற்கைன்கள் என்பனவற்றின் இரசாயனத் தாக்கங்கள் 2.2.1 அற்கேன்களின் தாக்கங்கள் 2.2.1.1 அற்கேன்களின் குளோரினேற்றம் 2.2.2 அற்கீன்களின் தாக்கங்கள் 2.2.2.1 ஐதரசன் ஏலைட்டுக்களைச் (HCl, HBr, HI) சேர்த்தல் 2.2.2.2 அற்கீன்களுக்குள் புரோமீனைச் சேர்த்தல் 2.2.2.3 சல்பூரிக் அமிலத்தைச் சேர்த்தலும் கூட்டல் விளைவின் நீர்ப்பகுப்பும் 2.2.2.4 ஊக்கி முன்னிலையில் ஐதரசனைச் சேர்த்தல் (ஐதரனேற்றம்) 2.2.2.5 அற்கீன்களுடன் ஐதான குளிர் கார KMnO₄ இன் தாக்கங்கள் 2.2.3 அற்கைன்களின் தாக்கங்கள் 2.2.3.1 புரோமீனைச் சேர்த்தல் 2.2.3.2 ஐதரசன் ஏலைட்டுக்களைச் சேர்த்தல் 2.2.3.3 நீரைச் சேர்த்தல் 2.2.3.4 ஊக்கி முன்னிலையில் ஐதரசனைச் சேர்த்தல் (ஐதரசனேற்றம்) 2.2.4 முடிவுநிலை ஐதரசனைக் கொண்டுள்ள அற்கைன்களின் $(-C \equiv C - H)$ அமிலத்தன்மை பென்சீனின் கட்டமைப்பு 47 - 50 2.3 2.3.1 பென்சீனின் கட்டமைப்பு 2.3.2 பென்சீனின் உறுதித்தன்மை பென்சீனின் உறுதியை உதாரணங்கள் மூலம் விளக்குவதற்கான 2.4 சிறப்பியல்பான தாக்கங்கள் 51 - 56 2.4.1 பென்சீனின் இலத்திரனாட்டப் பிரதியீட்டத் தாக்கங்கள் 2.4.1.1 நைத்திரேற்றம் 2.4.1.2 பிரீடல் - கிராவ் (Friedel - Crafts) இன் அற்கைலேற்றம்

- 2.4.1.3 பிரீடல் கிராவ் இன் ஏசைலேற்றம்
- 2.4.1.4 அலசனேற்றம்
- 2.4.2 பென்சீன் வளையத்தின் ஒட்சியேற்றத்திற்கான தடை
- 2.4.3 பென்சீன் வளையத்தின் ஐதரசனேற்றத்திற்கான தடை

ஒரு பிரதியீட்டுப் பென்சீனிலுள்ள பிரதியீட்டுத் தொகுதிகளின் திசைப்படுத்தும் இயல்பு 2.5.1 ஒதோ, பரா திசைப்படுத்தும் தொகுதிகள் 2.5.2 மெற்றா திசைப்படுத்தும் தொகுதிகள்	56 - 5	57
அற்கைல் ஏலைட்டுக்களின் கட்டமைப்புக்களும் தாக்கங்களும்	57 - 5	59
பிணைப்பு உண்டாதல் பிணைப்பு உடைதல் நேரத்தின் அடிப்படையில் அற்கைல் ஏலைட்டுக்களின் கருநாட்டப் பிரதியீட்டுத் தாக்கங்கள்	60 - 6	61
கு 9: ஒட்சிசனைக் கொண்டுள்ள சேதனச் சேர்வைகள்		
 அற்ககோல்களின் கட்டமைப்புக்களும் இயல்புகளும் தாக்கங்களும் 3.1.1 ஓர் ஐதரிக் அற்ககோல்களைப் பாகுபடுத்துதல் 3.1.2 பௌதீக இயல்புகள் 3.1.3 அற்ககோல்களின் தாக்கங்கள் 3.1.3.1 O - H பிணைப்பு பிளவடைதலுடன் ஈடுபடும் தாக்கங்கள் 3.1.3.2 C- O பிணைப்பு பிளவடைதலுடன் ஈடுபடும் கருநாட்டப் பிரதியீட்டுத் தாக்கங்கள் 3.1.3.3 நீக்கல் தாக்கம் 3.1.3.4 அற்ககோல்களின் ஒட்சியேற்றம் 	64 - (68
பீனோல்களின் கட்டமைப்புக்களும் இயல்புகளும் தாக்கங்களும் 3.2.1 பீனோல்களின் அமிலத்தன்மை 3.2.2 O - H பிணைப்பு பிளவு அடைதலுடன் ஈடுபடும் தாக்கங்கள் 3.2.3 C- O பிணைப்பு உடைதலினால் நிகழ முடியாத கருநாட்டப் பிரதியீட்டுத் தாக்கங்கள்	69 - 7	70
பீனோல்களிலுள்ள பென்சீன் வளையத்தின் தாக்குதன்மை 3.3.1 புரோமீனுடன் பீனோலின் தாக்கம் 3.3.2 பீனோலின் நைத்திரேற்றம்	71 - 7	71
 அல்டிகைட்டுக்கள், கீற்றோன்கள் என்பனவற்றின் கட்டமைப்புக்கள், இயல்புகள் மற்றும் தாக்கங்கள் 3.4.1 பௌதீக இயல்புகள் 3.4.2 அல்டிகைட்டுக்கள் மற்றும் கீற்றோன்களின் தாக்கங்கள். 3.4.3 கருநாட்டக் கூட்டல் தாக்கங்கள் 3.4.3.1 அல்டிகைட்டுக்கள், கீற்றோன்கள் என்பனவற்றினுள் HCN ஐச் சேர்த்தல். 3.4.3.2 கிரினாட்டின் சோதனைப் பொருட்களுடன் தாக்கங்கள். 3.4.3.3 2, 4- இருநைத்திரோ பீனைல் ஐதரசீனுடன் தாக்கம் (2, 4- DNP அல்லது பிரடியின்(Brady) சோதனைப்பொருள்) 	72 - 7	79
	 திசைப்படுத்தும் இயல்பு 2.5.1 ஒதோ, பரா திசைப்படுத்தும் தொகுதிகள் 2.5.2 மெற்றா திசைப்படுத்தும் தொகுதிகள் அற்கைல் ஏலைட்டுக்களின் கட்டமைப்புக்களும் தாக்கங்களும் பிணைப்பு உண்டாதல் பிணைப்பு உடைதல் நேரத்தின் அடிப்படையில் அற்கைல் ஏலைட்டுக்களின் கருநாட்டப் பிரதியீட்டுத் தாக்கங்கள் கு 9: ஓட்சிசனைக் கொண்டுள்ள சேதனச் சேர்வைகள் அற்ககோல்களின் கட்டமைப்புக்களும் இயல்புகளும் தாக்கங்கள் 3.1.1 ஒர் ஐதரிக் அற்ககோல்களைப் பாகுபடுத்துதல் 3.1.2 பொதீக இயல்புகள் 3.1.3 அற்ககோல்களின் தாக்கங்கள் 3.1.3 ப் O - H பிணைப்பு பிளவடைதலுடன் ஈடுபடும் தாக்கங்கள் 3.1.3 ப் O - H பிணைப்பு பிளவடைதலுடன் ஈடுபடும் தாக்கங்கள் 3.1.3 அற்ககோல்களின் ஒட்சியேற்றம் 3.1.4 அற்ககோல்களின் ஒட்சியேற்றம் பீனோல்களின் கட்டமைப்புக்களும் இயல்புகளும் தாக்கங்கள் 3.1.3.1 O - H பிணைப்பு பிளவடைதலுடன் ஈடுபடும் தாக்கங்கள் 3.1.3.2 C - O பினைப்பு பிளவடைதலுடன் ஈடுபடும் தாக்கங்கள் 3.1.3.3 நீக்கல் தாக்கம் 3.1.4 அற்ககோல்களின் ஒட்சியேற்றம் பீனோல்களின் கட்டமைப்புக்களும் இயல்புகளும் தாக்கங்களும் 3.1.3.4 அற்ககோல்களின் ஒட்சியேற்றம் பீனோல்களின் கட்டமைப்புக்களும் இயல்புகளும் தாக்கங்கள் 3.2.2 O - H பிணைப்பு பிளவு அடைதலுடன் ஈடுபடும் தாக்கங்கள் 3.2.3 C - O வீணைப்பு உடைதலுனால் நிகழ முடியாத கருநாட்டப் பிரதியீட்டுத் தாக்கங்கள் 3.3.1 புரோமீனுடன் பினையத்தின் தாக்குதன்மை 3.3.1 புரோமீனுடன் பீனோலின் தாக்கம் 3.3.2 பீனோலின் நாக்கங்க 3.3.2 பீனோலின் தாக்கம் 3.4.1 பொதீக இயல்புகள் 3.4.3 குறாட்டக் கர்டல் தாக்கங்கள் 3.4.3 மற்றேன்கள் என்பனவைற்றின் கட்டமைப்புக்கள், இயல்டிகள் கன்கள் 3.4.3 ப் அல்டிகைக்கள் 3.4.3 குறாட்டக் கர்கள் 3.4.3 ப் கல்டின் கன் கன் 3.4.3.1 அல்டினைக்கள் 3.4.3.1 அல்டினைக்கள் 3.4.3.1 அல்டின்கள் என்பனவற்றின் தாக்கங்கள். 3.4.3.1 கல்டின் காகன்கள் 3.4.3.2 கிரினாடின் சொதனைப் பொருட்களுன் தாக்கங்கள். 3.4.3.2 கிரினாட்டின் சோதனைப் பொருட்கள் தான்னை காக்கங்.	第日の中山(氏美妻山) 奥山ல山 56 2.5.1 ඉළோ, பரா திரைப்படுத்தும் தொகுதிகள்

- 3.4.3.5 இலித்தியம் அலுமீனியம் ஐதரைட்டு (LiAlH₄) அல்லது சோடியம் போரோ ஐதரைட்டு (NaBH₄) இனால் அல்டிகைட்டுக்கள், கீற்றோன்கள் என்பனவற்றைத் தாழ்த்தல்.
- 3.4.6 Zn(Hg) / செறிHCl இனால் அல்டிகைட்டுக்கள், கீற்றோன்கள் என்பனவற்றைத் தாழ்த்தல் (கிமைன்சனின் தாழ்த்தல்)
- 3.4.7 அல்டிகைட்டுக்களின் ஒட்சியேற்றம்
 - 3.4.7.1 தொலனின் (Tollen) சோதனைப்பொருளினால் ஒட்சியேற்றம்
 - 3.4.7.2 பீலிங்கின் (Fehling) கரைசலால் ஒட்சியேற்றம்
 - 3.4.7.3 அமிலமாக்கப்பட்ட பொற்றாசியம் இருகுரோமேற்று அல்லது அமிலமாக்கப்பட்ட பொற்றாசியம் பரமங்கனேற்று என்பனவற்றால் ஒட்சியேற்றம்.
- 3.5 காபொட்சிலிக் அமிலங்களின் கட்டமைப்புக்கள், இயல்புகள் மற்றும் 80 84 தாக்கங்கள்
 - 3.5.1 பௌதீக இயல்புகள்
 - 3.5.2 -COOH கூட்டத்தின் தாக்குதிறன் வகைகளை / மாதிரிகளை அல்டிகைட்டுக்கள், கீற்றோன்கள் என்பனவற்றின்
 >C=O கூட்டத்துடனும் மற்றும் அற்ககோல்கள், பீனோல்கள் என்பனவற்றின் -OH கூட்டத்துடனும் ஒப்பிடுதல்.
 3.5.2.1 O-H பிணைப்பு பிளவுபடுதலுடன் ஈடுபடும் தாக்கங்கள்
 3.5.2.2 C-O பிணைப்பு பிளவுபடுதலுடன் ஈடுபடும் தாக்கங்கள்
 - 3.5.2.3 LiAlH₄ உடன் காபொட்சிலிக் அமிலங்களின் தாழ்த்தல்.

85 - 89


3.6 காபொட்சிலிக் அமிலப் பெறுதிகளின் தாக்கங்கள்

- 3.6.1 அமில குளோரைட்டுக்களின் தாக்கங்கள்
 - 3.6.1.1 சோடியம் ஐதரொட்சைட்டு நீர்க்கரைசலுடன் தாக்கம்
 - 3.6.1.2 நீருடன் தாக்கம்
 - 3.6.1.3 அற்ககோல்கள், பீனோல்கள் என்பனவற்றுடன் தாக்கங்கள்
 - 3.6.1.4 அமோனியா மற்றும் முதல் அமைன்களுடன் தாக்கங்கள்
- 3.6.2 எசுத்தர்களின் தாக்கங்கள்
 - 3.6.2.1 ஐதான கனிப்பொருள் அமிலங்களுடன் தாக்கம்.
 - 3.6.2.2 சோடியம் ஐதரொட்சைட்டு நீர்க்கரைசலுடன் தாக்கம்
 - 3.6.2.3 கிரினாட்டின் சோதனைப் பொருளுடன் தாக்கம்
 - 3.6.2.4 LiAlH_4 ஆல் தாழ்த்தல்.
- 3.6.3 ஏமைட்டுக்களின் தாக்கங்கள்
 - 3.6.3.1 சோடியம் ஐதரொட்சைட்டு நீர்க்கரைசலுடன் தாக்கம்
 - 3.6.3.2 LiAlH_4 உடன் தாழ்த்தல்

அலகு 10: நைதரசன் உடைய சேதனச் சேர்வைகள்

4.1	முதல் அமை	ைன்கள் அனிலைன் ஆகியவற்றின் இயல்புகள், தாக்கங்கள்	91 - 93
	4.1.1 அமை	ள் களின் பாகுபாடு	
	4.1.2 அனி ത	ல னின் பென்சீன் வளையத்தின் தாக்குதிறன்	
	4.1.3 முதல்	அமைன்களின் தாக்கங்கள்	
	4.1.3.1	அற்கைல் ஏலைட்டுகளுடன் அமீன்களின் தாக்கங்கள்	
	4.1.3.2	அலிடிகைட் டு கள், கீற்றோன்கள் என்பவற்றுடன்	
		அமைன்களின் தாக்கங்கள்	
	4.1.3.3	அமிலக் குளோரைட்டுகள் உடன் அமைன்களின் தாக்கங்கள்	
	4.1.3.4	நைதரஸ் அமிலத்துடன் (NaNO ₂ /HCl) அமைன்களின் தாக்கம்	
4.2	அமைன்களில	ன் மூலத்தன்மை	94 - 95
		் பா ர்கள் எதிர் அல்ககோல்களின் மூலத்தன்மை	
	4.2.2 முதல்	அலிபற்றிக் அமீன்கள், அனி லை ன் என்பவற்றின் மூலத்தன்மை	
	4.2.3 ஏமைட்	டுகளுடன் ஒப்பிட்ட அமீன்களின் மூலத்தன்மை	
4.3	அரோமற்றிக்	ஈரசோனியம் உப்புகளின் தாக்கங்கள்	96 - 98
	4.3.1 ஈரசோ6	<u> </u>	
	· · · · · ·	ட்டத்தினால் பிரதியிடப்படும் தாக்கங்கள்	
	4.3.1.1	நீருடன் ஈரசோனியம் உப்புக்களின் தாக்கம்	
	4.3.1.2	உபபொசுபரசு அமிலத்துடன் (H ₃ PO ₂) ஈரசோனியம்	
		உப்புகளின் தாக்கம்	
	4.3.1.3	CuCl, CuBr என்பவற்றுடன் ஈரசோனியம்	
		உப்புகளின் தாக்கம்	
	4.3.1.4	CuCN உடன் ஈரசோனியம் உப்புகளின் தாக்கம்	
	4.3.1.5	KI உடன் ஈரசோனியம் உப்புகளின் தாக்கம்	

4.3.3 ஈரசோனியம் அயன் இலத்திரன் நாடியாகத் தொழிற்படும் தாக்கங்கள்

1. சேதன இரசாயனத்தின் அடிப்படை எண்ணக்கருக்கள்

உள்ளடக்கம்

- 1.1 அன்றாட வாழ்க்கையில் சேதன இரசாயனம்
 - 1.1.1 காபன் ஏன் பெருமளவு எண்ணிக்கைச் சேதனச் சேர்வைகளைப் பரந்த கட்டமைப்பு வேற்றுமையுடன் உருவாக்குகின்றது? காபனின் ஒப்பற்ற தன்மை

1.2 தொழிற்பாட்டுக் கூட்டங்கள் தொடர்பான சேதனச் சேர்வைகளின் பல்வகைமை

- 1.2.1 பல்லின அணுக்களையுடைய தொழிற் பாட்டுக் கூட்டங்களைக் கொண்ட சேர்வைகளின் இனங்கள்

 - 1.2.1.1 அற்ககோல்கள்
 - 1.2.1.2 ஈதர்கள்
 - 1.2.1.3 அலிடிகைட்டுகள்
 - 1.2.1.4 கீற்றோன்கள்
 - 1.2.1.5 அற்கைல் ஏலைட்டுகள்
 - 1.2.1.6 காபொட்சிலிக்கு அமிலங்கள்
 - 1.2.1.7 அமில ஏலைட்டுகள், எசுத்தர்கள், ஏமைட்டுகள்
 - (காபொட்சிலிக்கு அமிலங்களின்
 - பெறுதிகள்)
 - 1.2.1.8 அமைன்கள்

1.3 சேதனச் சேர்வைகளின் IUPAC பெயரீடு

- 1.3.1 IUPAC பெயரீடு
- 1.3.2 அற்கேன் ஐதரோக்காபன்கள்
- 1.3.3 கிளைச் சங்கிலியுடைய அற்கேன்களின் பெயரீடு
- 1.3.4 அற்கீன், அற்கைன் ஐதரோக்காபன்களின் பெயரீடு
- 1.3.5 ஐதரோக்காபன்கள் தவிர்ந்த சேர்வைகளின் IUPAC பெயரீடு
- 1.3.6 ஒன்றிற்கு மேற்பட்ட தொழிற்பாட்டுக் கூட்டத்தையுடைய சேர்வைகளின் IUPAC பெயரீடு

1.4 சமபகுதிச் சேர்வு

- 1.4.1 கட்டமைப்புச் சமபகுதிச் சேர்வு
 - சங்கிலிச் சமபகுதியங்கள்
 - நிலைச் சமபகுதியங்கள்
 - தொழிற்பாட்டுக் கூட்டச் சமபகுதியங்கள்
- 1.4.2 திண்மத் தோற்றச் சமபகுதியச் சேர்வு
 - ஈர்வெளிமையச் சமபகுதியங்கள்
 - எதிருருக்கள்

அறீமுகம்

சேதன இரசாயனமானது காபன் சேர்வைகளின் இரசாயனமாகும். இச்சேர்வைகளில், மூலக்கூறின் வன்கூட்டை அல்லது முதுகெலும்பை உருவாக்குவது காபன் அணுக்கள் ஆகும். காபனுடன் சேதனச் சேர்வைகள் பொதுவாக ஐதரசனையும் கொண்டுள்ளன. சில குறிப்பிட்ட சேதனச் சேர்வைகளில் ஒட்சிசன், நைதரசன், கந்தகம், பொசுபரசு, அலசன்கள் ஆகியனவும் காணப்படு கின்றன. இச்சேர்வைகள் இயற்கையாகவோ அல்லது தொகுப்பிற்குரியனவாகவோ காணப்படலாம். எல்லா உயிருள்ள அங்கிகளிலும் சேதனச் சேர்வைகள் அத்தியாவசியமான கூறினை உருவாக்குகின்றன. அனுசேபத் தொழிற்பாடுகளில் மத்திய பங்கினை வகிக்கின்றன. உணவு, பிளாத்திக்குப் பொருட்கள், துணி, அழகுச் சாதனப் பொருட்கள், மருந்துப் பதார்த்தங்கள் போன்ற அன்றாட வாழ்க்கைக்குத் தேவையான பதார்த்தங்களில் அத்தியாவசியமான கூறினை உருவாக்குகின்றன. ஆவர்த்தன அட்டவணையில் ஏனைய மூலகங்கள் உருவாக்கும் சேர்வை களுடன் ஒப்பிடும்பொழுது காபன் மூலகம் உருவாக்கும் சேர்வைகளின் வகையும் எண்ணிக்கையும் மிக அதிகம்.

1.1 அன்நாட வாழ்க்கையில் சேதன இரசாயனம்

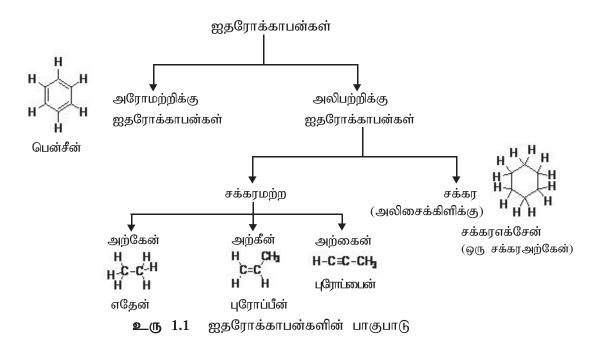
எமது இருக்கையின் ஒவ்வொரு நிலையிலும் சேதனச் சேர்வைகள் இணைந்துள்ளன. உதாரணமாக:

உணவுக்கூறுகள் :	காபோவைதரேற்றுகள், கொழுப்புகள், புரதங்கள்
பிளாத்திக்குப் பதார்த்தங்கள் :	PVC, பொலித்தீன், பொலிஸ்ரைரின், பொலியெசுத்தர்கள்,
	நைலோன்
மருந்துகள் :	பரசிற்றமோல், அஸ்பிரின், பெனிசிலின், அமொக்சிலின்
எரிபொருட்கள் :	பெற்றோல், டீசல், மண்ணெண்ணெய், LP வாயு

1.1.1 காபன் ஏன் பெருமளவு எண்ணிக்கை சேதனச் சேர்வைகளை பரந்த கட்டமைப்பு வேற்றுமையுடன் உருவாக்குகின்றது? காபனின் ஒப்பற்ற தன்மை

காபன் — காபன், காபன் — ஐதரசன் பிணைப்புகள் சேதனச் சேர்வைகளில் காணப்படும் தலைமையான பிணைப்புகளாகும். இரு காபன் அணுக்களுக்கிடையே வலிமையான ஒற்றைப் பிணைப்புகள், இரட்டைப் பிணைப்புகள், மும்மைப் பிணைப்புகள் உருவாகலாம். C யிற்கும் H யிற்கும் இடையிலான சிறிய மின்னெதிர்த்தன்மை வேறுபாடும் C–H பங்கீட்டுப் பிணைப்புகள் உருவாக்கத்திற்கு வழிகோலுகின்றது. அதன் வலுவளவு 4 இலக்கிரன்கள், ஒட்டிலுள்ள காபன் – காபன் இரட்டைப் பிணைப்புகள், மும்மைப் பிணைப்புகள் உள்ளடங்கலாக 4 பங்கீட்டுப் பிணைப்புகள் உருவாக உதவுகின்றன. இக்காரணங்களினால், காபன் நீட்டல், கிளைச் சங்கிலிகள், வளையங்கள் ஆகியவற்றை உருவாக்கக்கூடியதாகவுள்ளது. இது பலவிதமான காபன் வன்கூடுகள் உடைய சேர்வைகளை உருவாக்குவதற்கு வழிகோலுகின்றது. காபனிற்கு O, N, S, P அலசன்கள் ஆகியவற்றுடனும் பிணைப்புகளை உருவாக்கக்கூடியதாக இருப்பதால், ஏராளமான பல வகையான சேதனச் சேர்வைகளைப் பரந்த வீச்சுடைய மூலக்கூற்று நிறைகளில் தோற்றுவிக்கக்கூடியதாக உள்ளது. ஆவர்த்தன அட்டவணையில் C உள்ள அதே நான்காம் கூட்டத்திலுள்ள Si உடன் ஒப்பிடும்பொழுது, C–C, C–H பிணைப்புகள் முறையே

2


Si–Si, Si–H பிணைப்புகளிலும் அதிகளவு பிணைப்புச் சக்திகளை உடையன. மேலுள்ள கலந்துரையாடலுடன் தொடர்புடைய சில பிணைப்புச் சக்திகள் அட்டவணை 1.1 இல் காட்டப்பட்டுள்ளன.

பிணைப்பு	பீணைப்புச் சக்தீ / kJ mol ⁻¹
С–С	346
C=C	610
C≡C	835
С–Н	413
Si–Si	226
Si–H	318

அட்டவணை 1.1: C, Si உடன் தொடர்புடைய சில பிணைப்புகளின் பிணைப்புச் சக்திகள்

1.1.2 தொழிந்பாட்டுக் கூட்டங்கள் தொடர்பான சேதனச் சேர்வைகளின் பல்வகைமை

சில சேதனச் சேர்வைகள் C, H ஐ மாத்திரம் கூறு மூலகங்களாகவுடையன. இவை ஐதரோக் காபன்கள் என அறியப்பட்டுள்ளன. கட்டமைப்பு அடிப்படையில் ஐதரோக்காபன்கள் அலிபற்றிக்கு, அரோமற்றிக்கு என அழைக்கப்படும் இரண்டு பிரதான கூட்டங்களாகப் பிரிக்கப்பட்டுள்ளன. திறந்த காபன் சங்கிலிகள் மாத்திரம் உடைய ஐதரோகாபன்கள் சக்கரமற்ற அலிபற்றிக்கு ஐதரோகாபன்கள் எனவும், சக்கர காபன் சங்கிலிகளையுடையன சக்கர (alicyclic) ஐதரோக் காபன்கள் எனவும் அழைக்கப்படும். அலிபற்றிக்கு ஐதரோக்காபன்கள் அற்கேன்கள், அற்கீன்கள், அற்கைன்கள் எனப் பாகுபடுத்தப்பட்டுள்ளன. சக்கர ஓரிடப்பாடற்ற π இலத்திரன்களின் முகிலினால் உறுதியாக்கப்பட்ட சக்கர சேதனச் சேர்வைகள் அரோமற்றிக்கு சேதனச் சேர்வைகள் என அழைக்கப்படும். C₆H₆ என்னும் மூலக்கூற்றுச் சூத்திரத்தினால் குறிக்கப்படும் பென்சீன் எளிய அரோமற்றிக்கு ஐதரோகாபன் சேர்வையாகும். ஐதரோக் காபன்களின் பாகுபாடு உரு 1.1 இல் ஒவ்வொரு வகைக்குரிய பொதுவான உதாரணங்களுடன் காட்டப்பட்டுள்ளது.

குறிப்பு: தற்போதைய க.பொ.த. (உ/த) பாடத்திட்டத்தில் சக்கர அற்கேன்கள், சக்கர அற்கீன்கள், சக்கர அற்கைன்கள் உள்ளடக்கப்படவில்லை.

சேர்வைகள் அவற்றின் மூலக்கூறிகளிலுள்ள தொழிற்பாட்டுக் கூட்டங்களுக்கேற்ப பாகுபடுத்தப் படுகின்றன. ஒரு மூலக்கூறின் தாக்கங்கள் எங்கு அனேகமாக நடைபெறுகின்றதோ அவ் வணுக்களின் கூட்டம் தொழிற்பாட்டுக் கூட்டமாகும். காபன் – காபன் இரட்டைப் பிணைப்பு, காபன் – காபன் மும்மைப் பிணைப்பு தவிர, ஒரு தொழிற்பாட்டுக் கூட்டம் நைதரசன், ஒட்சிசன் போன்ற ஒன்று அல்லது ஒன்றிற்கு மேற்பட்ட பலதரப்பட்ட அணுக்களை உடையது. பொதுவான தொழிற்பாட்டுக் கூட்டங்கள், அவற்றிற்கொத்த அமைப்பொத்த தொடர்களின் பெயர்கள் அட்டவணை 1.2 இல் தரப்பட்டுள்ளன.

தொழிந் பாட்ருக் கூட்டம்	அமைப்பொத்த தொடரின் பெயர்	பெயருடன் உதர	ைம்
c=c	அற்கீன் Alkene	H H C=C	propene
—C≡C—	அற்கைன் Alkyne	H CH ₃ H-CEC-H	ethyne
-OH	அற்ககோல் Alcohol	CH ₃ CH ₂ -OH	ethanol
-c'_H	அலிடிகைட்டு <mark>Aldehyd</mark> e	о сн₃-с́′ н	ethanal
-¢	கீற்றோன் Ketone	О СН ₃ -С́ СН ₃	propanone
-с' о-н	காபொட்சிலிக்கு அமிலம் Carboxylic acid	сн ₃ -с ⁰ 0-н	ethanoic acid
-c, x	அமில X = Cl; அமிலக் ^{ஏலைட்டு} குளோரைட்டு Acid acid chloride halide X = Br; அமில புரோமைட்டு acid bromide	CH₃−C̈́ CI	ethanoyl chloride
-c ^{′′} , 0-R	எசுத்தர் Ester	CH ₃ -C ^O O-CH ₃	methyl ethanoate
R ₁ -O R ₂	п தர் Ether	CH ₃ -O CH ₂ CH ₃	ethylmethyl ethe
	ஏமைட்டு Amide	CH3-C NH2	ethanamide

அட்டவணை 1.2: சேதனச் சேர்வைகளிலுள்ள தொழிற்பாட்டுக் கூட்டங்கள்

க.பொ.ச	5. (உ/த)	இரசாயனம்:	அலகு 7	சேதன	இரசாயனத்தின்	அடிப்படை	. எண்ணக்கருக்கள்
	R ₂	அமைன் ^ :			CH ₃ CH ₂ -N	NH ₂	ethylamine
	R ₁ —N R ₃	Amine			CH ₃ CH ₂ -N	vH `CH₃	ethylmethylamine
	—C≡N	நைத்தின Nitrile	ரல்		CH ₃ CH ₂ -0	C≡N	propanenitrile
	-x	அற்கைல் ஏலைட்டு			CH ₃ CH ₂ -0	CI	chloroethane
		Alkyl halide	alkyl chlo X = Br; ه پرویتهمیدان alkyl bro X = I; هری هیسهددان alkyl iodi	oride முகைல் mide கைல்	CH ₃ CH ₂ -F	Br	bromoethane

குறிப்பு: IUPAC பெயரீட்டு முறையில் அற்கீன்கள், அற்கைன்கள், ஈதர்கள், அற்கைல் ஏலைட்டுகள் தொழிற்பாட்டுக் கூட்டங்களாகக் கருதப்படுவதில்லை.

1.2.1 பல்வகை (பலதரப்பட்ட) அணுக்களையுடைய தொழிற்பாட்டுக் கூட்டங்களைக் கொண்ட சேர்வைகளின் தொகுதிகள்

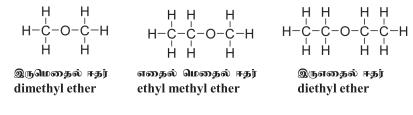
1.2.1.1 அற்ககோல்

ஒரு ஐதரொட்சில் கூட்டம் (–OH), ஒரு அற்கைல் கூட்டத்திற்கு இணைக்கப்பட்டதைக் கொண்ட சேர்வைகள் அற்ககோல்கள் உரு 1.2 இல் சில உதாரணங்கள் தரப்பட்டுள்ளன.

 H
 H
 H
 H
 OH H

 H-C-OH
 H-C-C-OH
 H-C-C-H
 H-C-C-H

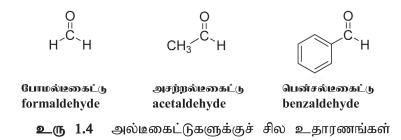
 H
 H
 H
 H


 Image: Algorithm of the state of

உரு 1.2 அற்ககோல்களுக்குச் சில உதாரணங்கள்

குறிப்பு: ஒரு அற்கேனிலிருந்து ஒரு ஐதரசன் அணுவை அகற்றுவதன் மூலம் ஒரு அற்கைல் கூட்டம் முறைமையாகப் பெறப்படுகின்றது.

1.2.1.2 ஈதர்கள்


ஒரு ஒட்சிசன் அணுவிற்கு இரு அற்கைல் கூட்டங்கள் இணைந்துள்ள சேர்வைகள் ஈதர்கள் ஆகும். சில உதாரணங்கள் உரு 1.3 இல் தரப்பட்டுள்ளன.

உரு 1.3 ஈதர்களுக்குச் சில உதாரணங்கள்

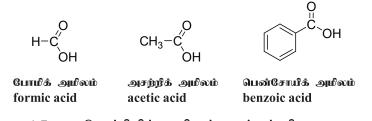
1.2.1.3 அல்டீகைட்டு

ஒரு காபனைல் கூட்டத்திற்கு (C=O) ஒரு H அணு இணைக்கப்பட்டதைக் கொண்ட சேர்வைகள் அல்டீகைட்டுகள் சில உதாரணங்கள் உரு 1.4 இல் தரப்பட்டுள்ளன.

1.2.1.4 கீற்றோன்கள்

ஒரு காபனைல் கூட்டத்திற்கு (C=O) அற்கைல் அல்லது ஏரைல் கூட்டத்தின் இரு காபன் அணுக்கள் இணைக்கப்பட்டதைக் கொண்ட சேர்வைகள் கீற்றோன்கள் ஆகும். உரு 1.5 இல் சில உதாரணங்கள் தரப்பட்டுள்ளன.

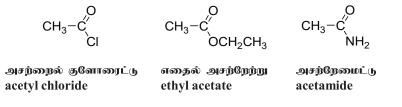
1.2.1.5 அந்கைல் ஏலைட்டுகள்


ஒரு அலசன் அணு ஒரு அற்கைல் கூட்டத்திற்கு இணைக்கப்பட்டதைக் கொண்ட சேர்வைகள் அற்கைல் ஏலைட்டுகள் ஆகும். உரு 1.6 இல் சில உதாரணங்கள் தரப்பட்டுள்ளன.

> Cl CH₃I CH₃CH₂Br CH₃CHCH₃ மைதைல் அயடைட்டு எதைல் புரோமைட்டு ஐசோ - புரோப்பைல் குளோரைட்டு methyl iodide ethyl bromide iso - propyi chloride உரு 1.6 அற்கைல் ஏலைட்டுகளுக்குச் சில உதாரணங்கள்

குறிப்பு: ஒரு அலசன் அணு அரோமற்றிக்கு வளையத்திற்கு இணைக்கப்பட்ட சேர்வைகள் ஏரைல் ஏலைட்டுகள் என அழைக்கப்படும்.

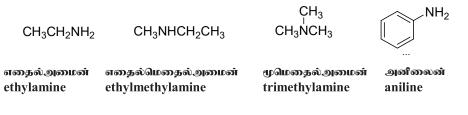
1.2.1.6 காபொட்சிலிக் அமிலங்கள்


காபொட்சிலிக் அமில (COOH) கூட்டத்தை உடைய சேர்வைகள் காபொட்சிலிக் அமிலங்கள் ஆகும். உரு 1.7 இல் சில உதாரணங்கள் தரப்பட்டுள்ளன.

உரு 1.7 காபொட்சிலிக் அமிலங்களுக்குச் சில உதாரணங்கள்

1.2.1.7 அமில ஏலைட்டுகள், எசுத்தர்கள், ஏமைட்டுகள் (காபொட்சிலிக் அமிலப் பெறுதிகள்)

COX கூட்டத்தை, இங்கு X என்பது அலசன் அணு உடைய சேர்வைகள் அமில ஏலைட்டுகள் ஆகும். COOR கூட்டத்தை உடைய சேர்வைகள் எசுத்தர்கள் ஆகும். CONH₂ கூட்டத்தை உடைய சேர்வைகள் ஏமைட்டுகள் ஆகும். உரு 1.8 இல் சில உதாரணங்கள் தரப்பட்டுள்ளன.



உரு 1.8 காபொட்சிலிக் அமிலங்களின் பெறுதிகளுக்குச் சில உதாரணங்கள்

குறிப்பு: அமில ஏலைட்டுகள், எசுத்தர்கள், ஏமைட்டுகள் என்பன COOH கூட்டத்திலுள்ள OH கூட்டத்தை முறையே அலசன், OR, NH, கூட்டங்களினால் பிரதியீடு செய்து பெறப்பட்டன.

1.2.1.8 அமைன்கள்

அமோனியாவிலுள்ள H அணுக்களை அற்கைல் கூட்டங்கள் அல்லது ஏரைல் கூட்டங்களினால் பிரதியீடு செய்வதனால் முறைமையாகப் பெறும் சேர்வைகள் அமைன்கள் ஆகும். உரு 1.9 இல் சில உதாரணங்கள் தரப்பட்டுள்ளன.

1.3 சேதனச் சேர்வைகளின் IUPAC பெயரீடு

இப்பொழுது பிரயோகத்திலுள்ள சேதனச் சேர்வைகளின் முறைமையான பெயரீட்டிற்குரிய ஒரு தொகுதி விதிகள், பல சர்வதேச மகாநாடுகள் மூலம் பெறப்பட்டன. இவை தூய, பிரயோக இரசாயன சர்வதேச சங்கத்தின் விதிகள் என அறியப்பட்டுள்ளன (IUPAC விதிகள்). எனவே இப்பெயரீட்டு முறை IUPAC பெயரீட்டு முறை என அழைக்கப்படுகின்றது. பெருமளவு பொதுவான சேதனச் சேர்வைகள் IUPAC பெயரீட்டுடன் பொதுவான பெயர்களினால் (முறைமையானதல்ல) அறியப்பட்டுள்ளன. இப்பகுதியின் முடிவில் சில உதாரணங்கள் தரப்பட்டுள்ளன.

1.3.1 IUPAC பெயர்டு

IUPAC பெயரீட்டு முறைமை அதிகளவு எண்ணிக்கையான விதிகளினால் ஆளப்படுகின்றது. எமது கலந்துரையாடலில் அனேக பொதுவான வகைச் சேதனச் சேர்வைகளைப் பெயரிடப் பயன்படுத்தும் மிக முக்கியமானவற்றை விளங்கிக் கொள்வதற்கு எம்மை மட்டுப்படுத்திக் கொள்வோம். IUPAC தொகுதியின் மிக முக்கியமான அம்சம் யாதெனில், தரப்பட்ட ஒரு சேதனச் சேர்வைக்கு ஒரு பெயரை மட்டும் வழங்குவதற்கும், தரப்பட்ட ஒரு IUPAC பெயரிற்கு ஒரு கட்டமைப்பை மட்டுமே எழுதுவதற்கும் அனுமதிக்கும் என்பதாகும்.

இந்த முறைமையில், O, N அலசன்கள் போன்ற பல்வகையான அணுக்களையுடைய சேர்வைகள் யாவும் ஒத்த ஐதரோக்காபனிலிருந்து பெறப்பட்டதாகக் கருதப்படும். எனவே ஆரம்பத்தில் IUPAC முறைமை பெயரீட்டிற்கேற்ப எவ்வாறு ஐதரோக்காபன்கள் பெயரிடப்படுவதாகப் பார்ப்போம்.

1.3.2 அற்கேன் ஐதரோக்காபன்கள்

நிரம்பிய ஐதரோக்காபன்கள் யாவற்றினதும் பெயர்கள் –ane என்ற பிற்சேர்க்கையுடன் முடிவுடையும். ஐதரோக்காபன் பெயரின் தண்டு நீண்ட காபன் சங்கிலியிலுள்ள காபன் அணுக்களின் எண்ணிக்கையைக் குறிக்கும். தண்டுக் கற்றல் சேதன இரசாயனத்தில் எண்ணுவதைக் கற்றல் போன்றிருக்கும். 6 காபன் அணுக்கள் வரை தண்டுப் பெயர்கள் அட்டவணை 1.3 இல் தரப்பட்டுள்ளன.

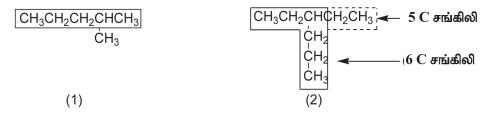
காபள் எண்ணிக்கை	Յուսյ	ஐதரோக்காபனின் பெயர்	கட்டமைப்பு
1	meth-	methane	CH ₄
2	eth-	ethane	CH ₃ CH ₃
3	prop-	propane	CH ₃ CH ₂ CH ₃
4	but-	butane	CH ₃ CH ₂ CH ₂ CH ₃
5	pent-	pentane	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃
6	hex-	hexane	CH3CH2CH2CH2CH2CH3

அட்டவணை 1.3: ஆறு காபன் அணுக்கள் வரை கொண்டுள்ள ஐதரோக்காபன்களின் தண்டுப் பெயர்கள்

சிறிதளவு மேலதிக சிக்கலான ஐதரோக்காபன்களைக் கருத முன்பு, அற்கைல் கூட்டங்களை நாம் எவ்வாறு பெயரிடலாம் எனப் பார்ப்போம்.

ஒரு அற்கேனிலிருந்து ஒரு H அணுவை நாம் முறைமையாக அகற்றும்பொழுது ஒரு அற்கைல் கூட்டம் பெறப்படுகின்றது. ஒரு அற்கைல் கூட்டத்தின் பெயர் –yl என்னும் பிற்சேர்க்கையுடன் முடிவுறும். கிளையற்ற ஐதரோக்காபனின் முடிவுநிலை H அணு அகற்றப்படும் பொழுது, கிளையற்ற அற்கைல் கூட்டம் உருவாக்கப்படும். அட்டவணை 1.4 இல் சில உதாரணங்கள் தரப்பட்டுள்ளன.

அட்டவணை 1.4: அற்கைல் கூட்டங்களின் சில உதாரணங்கள்


ஐதரோக்காபன்		அந்கைல் கூட்டம்	
H-CH3	மெதேன் (methane)	-CH3	மெதைல் (Methyl)
H-CH2CH3	எதேன் (ethane)	-CH ₂ CH ₃	எதைல் (ethyl)
H-CH2CH2CH3	புரோப்பேன்(propane)	-CH2CH2CH3	புரோப்பைல் (propyl)

1.3.3 கிளைச்சங்கிலியுடைய அற்கேன்களின் பெயரீடு

கிளைச்சங்கிலி உடைய அற்கேன்களை நீண்ட காபன் சங்கிலிக்கு அற்கைல் கூட்டங்கள் இணைக்கப்பட்ட ஐதரோக்காபன்களாகக் கருதலாம். பின்வரும் உதாரணங்களை எடுத்து கிளைச் சங்கிலி உடைய அற்கேன்களைப் பெயரிடும் படிமுறைகளைக் கவனிப்போம்.

CH ₃ CH ₂ CH ₂ CHCH ₃	CH ₃ CH ₂ CHCH ₂ CH ₃
ĊН₃	ĊН ₂
	ĊН ₂
	ĊH ₃
(1)	(2)

படி 1: மிக நீண்ட தொடர்ச்சியான காபன் அணுக்களையுடைய சங்கிலியை இனம் கண்டு ஐதரோக்காபன் பெயரைப் பெறுக.

5 காபன் அணுக்கள் - pentane 6 காபன் அணுக்கள் - hexane

குறிப்பு: சேர்வை 1 இல் காபன் அணுக்களில் ஒன்றிற்கு ஒரு மெதைல் கூட்டம் இணைக்கப் பட்டுள்ளது. சேர்வை 2 இல் காபன் அணுக்களில் ஒன்றிற்கு ஒரு எதைல் கூட்டம் இணைக்கப்பட்டுள்ளது. ஐதரோக்காபன் சங்கிலியில் ஒரு H அணுவை இடம்பெயர்க்கும் கூட்டம் பிரதியீட்டுக் கூட்டம் என அழைக்கப்படும். ஆகவே சேர்வை 1 இல் மெதைல் கூட்டம், சேர்வை 2 இல் எதைல் கூட்டம் பிரதியீடுகளாக உள்ளன. படி 2: நீண்ட தொடர்ச்சியான காபன் சங்கிலியிலுள்ள பிரதியீட்டுக் கூட்டத்தையுடைய C அணு இழிவு எண்ணைப் பெறக்கூடியவாறு நீண்ட தொடர்ச்சியான காபன் சங்கிலியை எண்ணிடுக.

⁵ 4 3 2 1 CH ₃ CH ₂ CH ₂ CHCH ₃	¹ CH ₃ ² CH ₂ CHCH ₂ CH ₃
ĊH ₃	₄ĊH₂
	₅CH₂ ₅CH₃
(1)	(2)

- குறிப்பு: சேர்வை 1 இன் காபன் சங்கிலி வலப்பக்கத்திலிருந்து இடப்புறமாக எண்ணிடப்பட்டுள்ளது. இச்சேர்வையின் காபன் சங்கிலி இடப்புறத்திலிருந்து வலப்பக்கமாக எண்ணிடப்பட்டால் மெதைல் கூட்டத்தையுடைய காபன் அணுவிற்கு எண் 4 வழங்கப்படும். இவ்வெண் 2 இலும் உயர்வானது.
- படி 3: பிரதியீட்டின் நிலையைக் குறித்துக் காட்டுவதற்கு மேலே படி (2) ஐப் பயன்படுத்திப் பெற்ற எண்ணை உபயோகிக்குக. பிரதியீட்டுக் கூட்டத்தின் பெயரை அதன் நிலையைக் குறித்துக் காட்டும் எண்ணுடன் எழுதி அதனைத் தொடர்ந்து ஐதரோக்காபன் பெயரை (பெற்றார் ஐதரோக் காபனின் பெயர்) எழுதுக. சொற்களிலிருந்து எண்கள் (-) (hyphen) இனாலும் எண்கள் (,) (comma) இனாலும் வேறாக்கப்படும்.

CH ₃ CH ₂ CHCH ₂ CH ₃ CH ₂ CHCH ₂ CH ₃
₄ĊH₂
₅ĊH₂
_б ĊН ₃
(2)
3-ethylhexane

இரண்டு அல்லது அதற்கு மேற்பட்ட பிரதியீடுகள் உள்ள பொழுது, மிக நீண்ட காபன் சங்கிலி யில் அவற்றின் நிலைகளைக் குறித்துக் காட்டும் எண்கள் மிகக் குறைந்த எண்களைப் பெறல் வேண்டும். IUPAC பெயரில் பிரதியீடுகளின் பெயர்கள் ஆங்கில அரிச்சுவடு ஒழுங்கில் எழுதப்படும். மேலும் இரு உதாரணங்களை நாம் கருதுவோம்.

	ĊH ₃ ĊHĊH ₂ ĊHĊH ₂ ĊH ₃ ĊH ₃ ĊH ₂ CH ₃	CH ₂ CH ₃ CH ₃ CH ₂ CCH ₂ CH ₃ CH ₃ CH ₂ CCH ₂ CH ₃
மிக நீண்ட ஐதரோக்காபன் சங்கில	ஆறு - hexane	ஐந்து - pentane
பிரதியீடுகளும் அவற்றின் நிலைகளும்	2-methyl, 4-ethyl	3-methyl, 3-ethyl
IUPAC பெயர்	4-ethyl-2-methylhexane	3-ethyl-3-methylpentane

இரண்டு அல்லது இரண்டிற்கு மேற்பட்ட பிரதியீடுகள் ஒத்ததாகக் காணப்படின் அவை, di-(2), tri-(3), tetra-(4) என்னும் முற்சேர்க்கைகளினால் குறித்துக் காட்டப்படும். ஒவ்வொரு பிரதியீட்டிற்கும் அதன் நிலையை மிக நீண்ட காபன் சங்கிலியில் குறித்துக் காட்டுவதற்கு எண் வழங்கப்பட வேண்டும்.

	ĊH ₃ ĊHĊH ₂ ĊHĊH ₃ ĊH ₃ ĊH ₃	сн ₃ сн ₃ сн2ссн2сн2сн3 сн3
மிக நீண்ட ஐதரோக்காபன் சங்கிலி	ஐந்து - pentane	ஆறு - hexane
பிரதியீடுகளும் அவற்றின் நிலைகளும்	2-methyl, 4-methyl	3-methyl, 3-methyl
IUPAC வயர்	2,4-dimethylpentane	3,3-dimethylhexane

1.3.4 அற்கீன், அற்கைன் ஐதரோக்காபன்களின் பெயரீடு

அற்கீன்கள் காபன் - காபன் இரட்டைப் பிணைப்புக்களுடையன. IUPAC பெயரீட்டிற்கேற்ப பிற்சேர்க்கை -ane ஆனது அற்கீன்களின் பெற்றார் ஐதரோக்காபனில் (parent hydrocarbon) இரட்டைப் பிணைப்பின் நிலையைக் குறிக்கும் எண்ணுடன் பிற்சேர்க்கை -ene இனால் பிரதியிடப்படும். சில உதாரணங்களை எடுத்து அற்கீன்களின் பெயரிடலில் சம்பந்தப்படும் படிகளை நாம் பார்ப்போம்.

படி 1: காபன் - காபன் இரட்டைப் பிணைப்பை உள்ளடக்கும் மிக நீண்ட தொடர்ச்சியான காபன் சங்கிலியை இனம் காண்க. இக்காபன் சங்கிலியை இரட்டைப் பிணைப்பு காபன் அணுக்கள் தாழ்ந்த எண்களைப் பெறக்கூடியவாறு இலக்கமிடுக.

படி 2: நீண்ட காபன் சங்கிலியிலுள்ள காபன் அணுக்களின் எண்ணிக்கையைப் பிரதிநிதிப்படுத்தும் பெயரை பிற்சேர்க்கை -ene உடன் இரட்டைப் பிணைப்பின் நிலையைக் குறிக்கும் தாழ்ந்த எண்ணை எழுதி IUPAC பெயரை உருவாக்குக.

	$^{4}_{CH_{3}CH_{2}CH=CH_{2}}^{3}$	$\overset{5}{C}H_{3}\overset{4}{C}H_{2}\overset{3}{C}H=\overset{2}{C}H\overset{1}{C}H_{3}$ (4)
மிக நீண்ட காபன் சங்கிலி	நான்கு - but	ஐந்து - pent
இரட்டைப் பிணைப்பு நிலை	1,2	2,3
IUPAC வயர்	but-1-ene (1-butene)	pent-2-ene (2-pentene)

படி 3: பிரதியீடுகள் காணப்படும்போது, அவை முற்சேர்க்கைகளாக, இரட்டைப் பிணைப்பை யுடைய மிக நீண்ட காபன் சங்கிலியில் அவற்றின் நிலைகளைக் குறிக்கும் எண்களுடன் எழுதப்படும்.

	CH ₃ CHCH=CHCH ₃ CH ₃	⁶ сн ₃ с́нс́н ₂ с̀=с̂нс́н ₃ с́н ₃ с̀н ₃
மிக நீண்ட காபன் சங்கிலி	ஐந்து - pent	ஆறு - hex
இரட் <mark>டைப் பினைப்பு நிலை</mark>	2,3	2,3
பெற்றார் ஐதரோக்காபன் பெயர்	pent-2-ene (2-pentene)	hex-2-ene (2-hexene)
பிரதியீடுகளும் அவற்றின் நிலைகளும்	4-methyl	3-methyl, 5-methyl
IUPAC பெயர்	4-methylpent-2-ene	3,5-dimethylhex-2-ene
	(4-methyl-2-pentene)	(3,5-dimethyl-2-hexene)

காபன் சங்கிலியை இரு பக்கங்களிலிருந்தும் எண்ணிடும்பொழுது இரட்டைப் பிணைப்பிற்கு ஒரே தொகுதி எண்கள் கிடைக்கப் பெறின், பிரதியீடுகளுக்கு மிகக் குறைந்த எண்கள் கிடைக்குமாறு எண்ணிடல் வேண்டும்.

	$CH_{3}CH_{2}CH_{2}CH=CHCHCH_{3}CH_$	сн ₃ сн ₂ с+2с=снснсн ₃ сн ₃ сн ₂ с+1 сн ₃ сн ₃
மிக நீண்ட காபன் சங்கிலி	ஆறு - hex	ஆறு - hex
இரட்டைப் பினைய்ப <mark>ு நிலை</mark>	3, 4	3, 4
பெற்றார் ஐதரோக்காபன் பெயர்	hex-3-ene (3-hexene)	hex-3-ene (3-hexene)
பிரதியீட்டின் நிலை	2-methyl	2-methyl, 4-methyl
IUPAC வயர்	2-methylhex-3-ene	2,4-dimethylhex-3-ene
	(2-methyl-3-hexene)	(2,4-dimethyl-3-hexene)

அற்கைன்கள் காபன் - காபன் மும்மைப் பிணைப்புகளை உடையன. இவை அற்கேனின் பிற்சேர்க்கை -ane ஐ பிற்சேர்க்கை -yne இனால் பிரதியிட்டுப் பெயரிடப்படும்.

	¹ CH ₃ C≡CCHCH ₃	CH3CH2C≡CCHCH3
	ĊH ₃	ĊH₃
மிக நீண்ட காபன் சங்கிலி	ஐந்து - pent	ஆறு - hex
மும்மைப் பினைப்பின் நிலை	2,3	3,4
பெற்றார் ஐதரோக்காபன் பெயர்	pent-2-yne (2-pentyne)	hex-3-yne (3-hex yne)
பிரதியீட்டின் நிலை	4-methyl	2-methyl
IUPAC வெயர்	4-methylpent-2-yne	2-methylhex-3-yne
	(4-methyl-2-pentyne)	(2-methyl-3-hexyne)

இப்பொழுது நாம் IUPAC முறைப்படி ஐதரோக்காபன்களை பெயரிடுவதன் அடிப்படைக் கொள்கைகளைச் சுருக்கமாகக் கூறுவோம். **இது தொழிற்பாட்டுக் கூட்டங்களைக் கொண்ட** சேர்வைகளைப் பெயரிடுவதற்கு அஸ்திவாரமாகவுள்ளது.

- எல்லாச் சேர்வைகளும் மிக நீண்ட காபன் சங்கிலியுடைய ஐதரோக்காபனிலிருந்து பெறப் பட்டதாகக் கருதப்படும்.
- இரட்டைப் பிணைப்பு அல்லது மும்மைப் பிணைப்புக் காணப்படின், இரட்டைப் பிணைப்பு அல்லது மும்மைப் பிணைப்பு உள்ளடங்குமாறு மிக நீண்ட காபன் சங்கிலி தெரிவு செய்யப்படும்.
- (iii) பொருத்தமான பிற்சேர்க்கை (-ane, -ene அல்லது -yne) காபன் அணுக்களின் எண்ணிக்கை யைக் குறிக்கும் தண்டுப் பெயரிற்கு (பெற்றார் ஐதரோக்காபன்) சேர்க்கப்படும்.
- (iv) இரட்டைப் பிணைப்புகள் அல்லது மும்மைப் பிணைப்புகள் காணப்படாவிடின், பிரதியீடுகளைக் கொண்டிருக்கும் காபன் அணுக்களுக்கு மிகக் குறைந்த சாத்தியமான எண்கள் வழங்கப் படும்.

- (v) இரட்டைப் பிணைப்பு அல்லது மும்மைப் பிணைப்புக் காணப்படின் அதற்கு மிகக் குறைந்த சாத்தியமான எண் வழங்கப்படும்.
- (vi) பிரதியீடுகளின் பெயர்கள் பெற்றார் ஐதரோக்காபன் பெயரிற்கு முன்னால் முற்சேர்க்கையாக ஆங்கில அரிச்சுவட்டு ஒழுங்கில் எழுதப்படும் / வைக்கப்படும்.

1.3.5 ஐதரோக்காபன்கள் தவிர்ந்த சேர்வைகளின் IUPAC பெயரீடு

இப்பகுதியில் ஏனைய தொழிற்பாட்டுக் கூட்டங்களையுடைய சேர்வைகளின் பெயரீடு (அட்டவணை 1.2) கலந்துரையாடப்படும். இதுவும் நாம் ஏற்கனவே கலந்துரையாடிய கொள்கைகளைப் பின்பற்றும். மேலதிகமாக எமக்கு இப்பொழுது ஒரு வகுப்புப் பெயர் (பிற்சேர்க்கை), மூலக்கூறிலுள்ள தொழிற்பாட்டுக் கூட்டத்தைக் குறித்துக் காட்டுவதற்குத் தேவையாகவுள்ளது.

சில தொழிற்பாட்டுக் கூட்டங்களின் வகுப்புப் பெயர்களை (பிற்சேர்க்கைகள்) (அட்டவணை 1.5) நாம் எடுத்து, ஒரு தொழிற்பாட்டுக் கூட்டத்தையுடைய சேர்வைகளைப் பெயரிடலில் இந்தக் கொள்கைகளை எவ்வாறு பிரயோகிக்கலாம் எனக் கற்போம்.

தொழிற்பாட்டுக் கூட்டம்	அமைப்பொத்த தொடரின் பெயர்	வகுப்புப் பெயர் (பிற்சேர்க்கை)
-CH	Alcohol (அற்ககோல்)	-ol
-c″	Aldehyde (அலிடிகைட்டு)	-al
-ć	Ketone (கீற்றோன்)	-one
—с" 0-н	Carboxylic acid (காபொட்சிலிக்கு அமிலம்)	-oic acid

அட்டவணை 1.5: சில தொழிற்பாட்டுக் கூட்டங்களின் வகுப்புப் பெயர்கள்

பின்வரும் சேர்வைகளைப் பெயரிடலில் சம்பந்தப்பட்டுள்ள படிகளை நாம் இப்பொழுது பார்ப்போம்.

$$\begin{array}{c} \mathsf{OH} & \mathsf{OH} \\ \mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{OH} & \mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}\mathsf{CH}_3 & \mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_3 \end{array}$$

(1) தொழிற்பாட்டுக் கூட்டத்தையுடைய மிக நீண்ட தொடர்ச்சியான காபன் சங்கிலியை இனங்கண்டு, தொழிற்பாட்டுக் கூட்டத்தையுடைய C அணுவிற்கு மிகச் சாத்தியமான இழிவு எண் பெறக்கூடியவாறு காபன் சங்கிலியின் காபன் அணுக்களை எண்ணிடுக.

$$\overset{OH}{\overset{2}{\mathsf{C}}}_{H_3} \overset{O}{\overset{2}{\mathsf{C}}}_{H_2} \overset{1}{\overset{C}{\mathsf{C}}}_{H_2} \overset{O}{\overset{C}{\mathsf{C}}}_{H_2} \overset{O}{\overset{2}{\mathsf{C}}}_{H_2} \overset{O}{\overset{2}}_{H_2} \overset{O}{\overset{2}{\mathsf{C}}}_{H_2} \overset{O}{\overset{2}}_{H_2} \overset{O}{\overset{2}}_{H_2} \overset{O}{\overset{2}}_{H_2} \overset{O}{\overset{2}}_{H_2} \overset{O}{\overset{2}}_{H_2} \overset{O}{\overset{2}}_{H_2} \overset{O}{\overset{C}}_{H_2} \overset{O}{\overset{2}}_{H_2} \overset{O}{\overset{C}}_{H_2} \overset{O}{\overset{O}}_{H_2} \overset{O}{\overset{O}}_{H_2} \overset{O}{\overset{C}}_{H_2} \overset{O}{\overset{O}}_{H_2} \overset{O}{}_{H_2}$$

(2) நிரம்பியதா அல்லது இரட்டைப் பிணைப்பு அல்லது மும்மைப் பிணைப்பை உடையதா எனவும் காபன் அணுக்களின் எண்ணிக்கையைச் சுட்டிக் காட்டகின்றதுமான பெற்றார் ஐதரோக்காபன் பெயரை உய்த்தறிக.

\dot{C} H ₃ \ddot{C} H ₂ \dot{C} H ₂ \dot{C} H ₂ OH	OH CH3CH2CH2CH2CH03	0 CH ₃ CH ₂ CH ₂ CCH ₃
4 C அணுக்கள் but	5 C அணுக்கள் pent	5 C அணுக்கள் pent
நிரம்பிய ane ஐதரோக்காபன் சங்கிலி	நிரம்பிய ane ஐதரோக்காபன் சங்கிலி	நிரம்பிய ane ஐதரோக்காபன் சங்கிலி
but + ane;	pent + ane;	pent + ane;
butane	pentane	pentane

(3) ஐதரோக்காபன் பெயரின் இறுதி எழுத்து 'e' (பெற்றார் ஐதரோக்காபன் பெயர்) யை அகற்றி, தொழிற்பாட்டுக் கூட்டத்தை இனங்காணும் பிற்சேர்க்கையை அதன் நிலையை எடுத்துக் காட்டும் எண்ணுடன் குறிப்பிட்டுச் சேர்வையின் பெயரை எழுதுக.

⁴ H ₃ CH ₂ ² H ₂ CH ₂ OH	0H ⁵ CH ₃ ⁴ CH ₂ ³ CH ₂ ^{2ℓ} CH ¹ CH ₃	5 CH ₃ ⁴ CH ₂ ³ CH ₂ ^{2 1} CH ₃ CH ₂ CCH ₃
butane + 1-ol	pentane + 2-ol	pentane + 2-one
butan-1-ol (1-butanol)	pentan-2-ol (2-pentanol)	pentan-2-one (2-pentanone)

மேலே பெறப்பட்ட IUPAC பெயர்கள் கீழேயுள்ள தகவல்களைத் தருகின்றன.

- (i) மிக நீண்ட தொடர்ச்சியான காபன் சங்கிலியிலுள்ள C அணுக்களின் எண்ணிக்கை (pent, but)
- (ii) காபன் சங்கிலியின் நிரம்பிய தன்மை (-an-)
- (iii) மூலக்கூறில் காணப்படும் தொழிற்பாட்டுக் கூட்டம், அதன் நிலை (1-ol, 2-ol அல்லது 2-one).
- **குறிப்பு:** அற்ககோல்களின் ஐதரொட்சில் கூட்டம் (OH), காபன் சங்கிலியின் எக் காபன் அணுவிலும், முடிவு நிலைக் காபன் உட்பட நிலைப்படுத்தப்படலாம். ஆனால் கீற்றோன்களின் காபனைல் கூட்டம் (C=O) காபன் சங்கிலியின் முடிவுநிலைக் காபன் அணுவில் நிலைப்படுத்தப்பட முடியாது. ஆகவே அற்ககோல்கள், கீற்றோன்கள் என்பவற்றைப் பெயரிடும்பொழுது தொழிற்பாட்டுக் கூட்டத்தின் நிலையைக் குறித்துக் காட்டும் எண் குறிப்பிடப்படல் வேண்டும்.

அ**லிடி**கைட்டுகள், காபொட்சிலிக்கு அமிலங்கள் என்பவற்றின் காபனைல் கூட்டம் எப்பொழுதும் காபன் சங்கிலியின் முடிவுநிலைக் காபனில் நிலைப்படுத்தப்படும். எனவே அவற்றின் நிலையைக் குறித்துக் காட்டும் எண் அவசியமில்லை. பின்வரும் உதாரணங்களை நாம் எடுப்போம்.

(1) தொழிற்பாட்டுக் கூட்டத்தையுடைய மிக நீண்ட காபன் சங்கிலியை இனங்கண்டு, காபன் சங்கிலியின் காபன் அணுக்களைத் தொழிற்பாட்டுக் கூட்டத்தின் C அணு எண் 1 ஐப் பெறுமாறு எண்ணிடுக.

$${}^{4}_{C}H_{3}{}^{3}_{C}H_{2}{}^{2}_{C}H_{2}{}^{1}_{C}OOH$$

$${}^{5}_{C}H_{3}{}^{4}_{C}H_{2}{}^{3}_{C}H_{2}{}^{2}_{C}H_{2}{}^{1}_{C}H_{0}$$

(2) C அணுக்களின் எண்ணிக்கையையும், நிரம்பியதா அல்லது இரட்டைப் பிணைப்பு அல்லது மும்மைப் பிணைப்பைக் கொண்டுள்ளதா எனக் காட்டும் பெற்றார் ஐதரோக்காபனைப் பெறுக.

⁴ CH ₃ CH ₂ CH ₂ COOH	${}^{5}CH_{3}{}^{4}CH_{2}{}^{3}CH_{2}{}^{2}CH_{2}{}^{1}CHO$
4 C அணுக்கள், நிரம்பிய	5 அணுக்கள், நிரம்பிய
ஐதரோக்காபன் (but + ane)	ஐதரோக்காபன் (pent + ane)

(3) ஐதரோக்காபன் பெயரின் இறுதி எழுத்து 'e' (பெற்றார் ஐதரோக்காபன் பெயர்) ஐ அகற்றி, தொழிற்பாட்டுக் கூட்டத்தை எழுதுக. அல்டீகைட்டு தொழிற்பாட்டுக் கூட்டம், காபொட்சிலிக் அமில தொழிற்பாட்டுக் கூட்டம் எப்பொழுதும் எண் 1 ஐப் பெறுவதால், இவற்றின் பெயரில் எண் குறிப்பிடப்படுவதில்லை.

4 CH ₃ CH ₂ CH ₂ COOH	${}^{5}CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CHO$
butane + oic acid	pentane + al
butanoic acid	pentanal

இப்பொழுது நாம் மிக நீண்ட காபன் சங்கிலியில் அற்கைல் பிரதியீடுகள் இணைக்கப்பட்ட சில உதாரணங்களை எடுப்போம். அல்டீகைட்டு, காபொட்சிலிக் அமில தொழிற்பாட்டுக் கூட்டங்கள் எப்பொழுதும் காபன் சங்கிலியின் முடிவு நிலையில் நிலைப்படுத்தப்படும் என்பதை நினைவு கூர்க. எனவே இவ்விரண்டு தொழிற்பாட்டுக் கூட்டங்களின் C யிற்கு எண்ணிடும்பொழுது எண் 1 வழங்கப்படும்.

$$\begin{array}{c} \mathsf{CH}_3\mathsf{CHCH}_2\mathsf{CHO} & \mathsf{CH}_3\mathsf{CHCH}_2\mathsf{CH}_2\mathsf{COOH} \\ \dot{\mathsf{CH}}_3 & \dot{\mathsf{CH}}_2\mathsf{CH}_3 \end{array}$$

மேலுள்ள உதாரணங்களைப் பெயரிடும்பொழுது சம்பந்தப்படும் படிகளைப் பார்ப்போம்.

(1) தொழிற்பாட்டுக் கூட்டத்தையுடைய மிக நீண்ட தொடர்ச்சியான காபன் சங்கிலியை இனங் காண்க. தொழிற்பாட்டுக் கூட்டத்தின் C அணு எண் 1 பெறுமாறு காபன் சங்கிலியின் காபன் அணுக்களை எண்ணிடுக.

$$\overset{4}{C}H_{3}^{3}CH\overset{2}{C}H_{2}\overset{1}{C}HO \\ \dot{C}H_{3} & CH_{3}^{4}\overset{3}{C}H_{2}^{2}CH_{2}^{1}COOH \\ \dot{C}H_{3} & \dot{C}\overset{5}{H}_{2}^{6}CH_{3} \\ \end{array}$$

(2) C அணுக்களின் எண்ணிக்கையையும், நிரம்பியதா அல்லது இரட்டைப் பிணைப்பு அல்லது மும்மைப் பிணைப்பைக் கொண்டுள்ளதா எனக் காட்டும் பெற்றார் ஐதரோக்காபனைப் பெறுக.

(3) பிரதியீட்டுக் கூட்டங்களை அவற்றின் நிலைகளுடன் இனம் காண்க.

4 3 2 1	4 3 2 1
CH ₃ CHCH ₂ CHO	CH ₃ CHCH ₂ CH ₂ COOH
ĊН ₃	ĊH₂ ⁶ CH₃
3-methyl	4-methyl

(4) ஐதரோக்காபன் பெயரின் இறுதி எழுத்து 'e'ஐ அகற்றி (பெற்றார் ஐதரோக்காபன் பெயர்) தொழிற்பாட்டுக் கூட்டத்தை இனங்காணும் பிற்சேர்க்கையைச் சேர்த்துச் சேர்வையின் IUPAC பெயரைப் கட்டியெழுப்புக. பிரதியீடுகளின் பெயர்களை அவற்றின் நிலைகளுடன் முற்சேர்க்கையாக வைக்க. பல பிரதியீடுகள் உள்ளபொழுது அவை ஆங்கில அரிச்சுவட்டு ஒழுங்கில் வைக்கப்படும்.

3-methyl+butane+al 3-methylbutanal

 $CH_{3}^{4}CHCH_{2}^{3}H_{2}^{2}CH_{2}^{1}COOH$ $CH_{2}^{5}H_{2}^{6}CH_{3}$

4-methyl+hexane+oic acid 4-methylhexanoic acid

மேலும் இரு உதாரணங்களை எடுப்போம்.

	⁵ сн ⁴ ₂ снсн ₂ снсно сн ₃ сн ₃	СН ₃ СН ₃ СН2СНСН2СНСООН СН2СН3
மீக நீண்ட காபன் சங்கிலி	5C - pent	6C - hex
பெற்றார் ஐதரோக்காபன் பெயர்	pentane	hex ane
தொழிற்பாட்டுக் கூட்டம் (நிலையுடன்)	1-al	1-oic acid
பிரதியீடுகள் நிலைகளுடன்	2-methyl, 4-methyl	2-methyl, 4-ethyl
IUPAC ລຸເມມ _ີ	2,4-dimethylpentanal	4-ethyl-2-methylhexanoic acid

ஏதேனும் காபன் அணுவில் வைக்கக்கூடிய தொழிற்பாட்டுக் கூட்டங்களையுடைய (அற்ககோல்கள், கீற்றோன்கள் போன்றவை) சேர்வைகளின் காபன் சங்கிலிகள், தொழிற்பாட்டுக் கூட்டம் மிக இழிவான சாத்தியமான எண்ணைப் பெறக்கூடியவாறு எண்ணிடப்படும். கலந்துரையாடப்பட்ட ஏனைய படிகள் IUPAC பெயரைக் கட்டியெழுப்பப் பின்பற்றப்படும்.

С́H ₃ CHCH ₂ CHCH ₂ OH CH ₃ CH ₃	5 4 3 ОН СН ₃ СНСН ₂ ССН ₃ СН ₃ СН ₃
5C அணுக்கள் - pent	5C அணுக்கள் - pent
pentane	pentane
C-1 இல் OH (1-ol)	C-2 இல் OH (2-ol)
2-methyl, 4-methyl	2-methyl, 4-methyl
2,4-dim ethyl pentan-1-ol 2,4-dim ethyl-1-pentanol	2,4-dimethylpentan-2-ol 2,4-dimethyl-2-pentanol
	ĊH ₃ ĊH ₃ 5C அணுக்கள் - pent pentane C-1 இல் OH (1-ol) 2-methyl, 4-methyl 2,4-dimethylpentan-1-ol

மேலும் சில உதாரணங்களை எடுப்போம்.

	O CH ₃ ⁶ CH ₃ CH ₂ CHCH ³ CH ₂ CH ₃ CH ₂ CH ₃	O ĊH₃℃ĊHCH₃ CH₃℃H℃H₃
மிக நீண்ட காபன் சங்கிலி	6C அணுக்கள் - hex	5C அணுக்கள் - pent
பெற்றார் ஐதரோக்காபன் பெயர்	hexane	pentane
தொழிற்பாட்டுக் கூட்டம் (நிலையுடன்)	C-3 @ w C=O (3-one)	C-2 @ i C=O (2-one)
பிரதியீடுகள் நிலைகளுடன்	2-methyl, 4-ethyl	3-methyl, 4-methyl
IUPAC ຈເມມ _ີ ກໍ	4-ethyl-2-methylhexan-3-one 4-ethyl-2-methyl-3-hexanone	3,4-dimethylpentan-2-one 3,4-dimethyl-2-pentanone

சேர்வையில் ஒரு இரட்டைப் பிணைப்பு அல்லது ஒரு மும்மைப் பிணைப்பு (ஒரு பன்மைப் பிணைப்பு) காணப்படின், மிக நீண்ட சங்கிலி தொழிற்பாட்டுக் கூட்டம், பன்மைப் பிணைப்பு ஆகிய இரண்டையும் கொண்டிருக்க வேண்டும். இதன்படி பெற்றார் ஐதரோக்காபன் ஒரு அற்கீன் அல்லது ஒரு அற்கைன் ஆகும். கலந்துரையாடப்பட்ட ஏனைய படிகள் IUPAC பெயரைக் கட்டியெழுப்பப் பின்பற்றப்படும் சில உதாரணங்களை நாம் பார்ப்போம்.

	СН ₃ СН ₃ С́=снснсо ₂ н сн ₃	СН ₂ СН ₃ сН ₂ =сснсн ₃ сН ₂ =сснсн ₃ он
மிக நீண்ட காபன் சங்கிலி	5C அணுக்கள் - pent	4C அணுக்கள் - but
தொழிற்பாட்டுக் கூட்டம் (நிலையுடன்)	oic acid	2-o1
இரட்டை/மும்மைப் பிணைப்பு நிலையுடன்	3-ene	3-ene
பெற்றார் ஐதரோக்காபன் பெயர்	pent-3-ene	but-3-ene
பிரதியீடுகள் நிலைகளுடன்	2-methyl, 4-methyl	3-ethyl
IUPAC பெயர்	2,4-dimethylpent-3-enoic acid 2,4-dimethyl-3-pentenoic acid	3-ethylbut-3-en-2-ol 3-ethyl-3-buten-2-ol

	сн ₃ сн ₃ с=снснсссн ₃ сн ₃ ö	CH₃ ℃H₃℃≡℃℃HCH₂CHO
மிக <mark>நீண்ட காபன் சங்</mark> கிலி	6C அணுக்கள் - hex	6C அணுக்கள் - hex
தொழிற்பாட்டுக் கூட்டம் (நிலையுடன்)	2-one	al
இரட்டை/மும்மைப் பினைப்பு நிலையுடன்	4-ene	4-yne
பெற்றார் ஐதரோக்காபன் பெயர்	hex-4-ene	hex-4-yne
பிரதியீடுகள் நிலைகளுடன்	3-methyl, 5-methyl	3-methyl
IUPAC பெயர்	3,5-dimethylhex-4-en-2-one 3,5-dimethyl-4-hexen-2-one	3-methylhex-4-ynal 3-methyl-4-hexynal

1.3.6 ஒன்றீற்கு மேற்பட்ட தொழிற்பாட்டுக் கூட்டங்களையுடைய சேர்வைகளின் IUPAC பெயரீடு

பல தொழிற்பாட்டுக் கூட்டங்களையுடைய அனேக சேதனச் சேர்வைகள் உள்ளன. சேர்வைகள் அவற்றின் தொழிற்பாட்டுக் கூட்டத்திற்கேற்பப் பெயரிடப்படுவது பற்றி நீங்கள் முன்னைய கலந்துரை யாடலில் கற்றதை மீட்டுப் பார்க்க. IUPAC பெயரீட்டுத் தொகுதியில் தொழிற்பாட்டுக் கூட்டங்கள் முன்னுரிமை ஒழுங்கில் ஒழுங்குபடுத்தப்பட்டுள்ளன. ஒரு மூலக்கூறில் இரண்டு தொழிற்பாட்டுக் கூட்டங்கள் உள்ளபொழுது, முன்னுரிமை கூடிய தொழிற்பாட்டுக் கூட்டத்திற்கேற்பப் பெயரிடப்படும். முன்னுரிமை கூடிய தொழிற்பாட்டுக் கூட்டம் பிரதான (தலைமையிலான) தொழிற்பாட்டுக் கூட்டம் என அழைக்கப்படும். பின்தங்கும் மற்றைய தொழிற்பாட்டுக் கூட்டம் ஒரு பிரதியீடாகக் கருதும் பொழுது, முற்சேர்க்கையாகப் பயன்படுத்தும் வேறொரு பெயர் வழங்கப்படும். காபன் சங்கிலி யானது பிரதான தொழிற்பாட்டுக் கூட்டம் சாத்தியமான இழிவு எண்ணைப் பெறுமாறு எண்ணிடப்படும். சில தொழிற்பாட்டுக் கூட்டங்களின் வகுப்புப் பெயர்களும் பிரதியீடுகளின் பெயர்களும் முன்னுரிமை ஒழுங்கில் அட்டவணை 1.6 இல் தரப்பட்டுள்ளன.

தொழிந்பாட்டுக் கூட்டம்	அமைப்பொத்த தொடரின் பெயர்	பிரதியீட்டின் பெயர் (முற்சேர்க்கை)	வகுப்புப் பெயர் (பிந்சேர்க்கை)
-COOH	காபொட்சிலிக்கு அமிலம்	121	oic acid
-COOR	எசுத்தர்	a##	oate
-COC1	அமிலக் குளோரைட்டு	(1)	oyl chloride
-CONH ₂	ஏமைட்டு	((B))	amide
-CN	நைத்திரைல <mark>்</mark>	c yan o	nitrile
-CHO	அலிடிகைட்டு	f orm yl	al
-CO-	<mark>கீற்றோன்</mark>	OX O	one
-OH	அற்ககோல்	hydroxy-	ol
-NH ₂	அமைன்	amino	amine
-F		fluoro-	÷
-Cl		chloro-	<u>9</u> 9
-Br		bromo-	72
-I		iodo-	-10 -10
- NO ₂		nitro	7 3

அட்டவணை 1.6: சில தொழிற்பாட்டுக் கூட்டங்களின் அவற்றின் முன்னுரிமை ஒழுங்கில் வகுப்புப் பெயர்கள், பிரதியீடுகளின் பெயர்கள்

குறிப்பு: அற்கீன் (C=C) "ene" எனவும், அற்கைன் (C≡C) "yne" எனவும் பிற்சேர்க்கை பயன் படுத்தப்படும்.

	СН₃ ČH₃Ć=ČHĊĊО₂Н ĊH₃ ОН
மிக <mark>நீண்ட காபன் சங்கிலி</mark>	5C அணுக்கள் - pent
உயர்ந்த முன்னூிமையுடைய தொழிர்பாட்டுக் கூட்டம் அதன் நிலையும்	oic acid
இரட்டை/மும்மைப் பிணைப்பு அதன் நிலையுடன்	3-ene
பெற்றார் ஐதரோக்காபன் பெயர்	pent-3-ene
பிரதியீடுகள் அவற்றின் நிலைகளுடன்	2-hydroxy, 2-methyl, 4-methyl
IUPAC ดเมษ ว ์	2-hydroxy-2,4-dimethylpent-3-enoic acid 2-hydroxy-2,4-dimethyl-3-pentenoic acid

	СН ₃ О СН ₃ ССН ₂ ССНОН СН ₃ ССН ₃ СН ₃
மிக நீண்ட காப <mark>ன்</mark> சங்கிலி	6C அணுக்கள் - hex
உயர்ந்த முன்னுரிமையுடைய தொழிற்பாட்டுக் கூட்டம் அதன் நிலையும்	3-one
இரட்டை/மும்மைப் பினைப்பு அதன் நிலையுடன்	none
பெற்றார் ஐதரோக்காபன் பெயர்	hexane
பிரதியீடுகள் அவற்றின் நிலைகளுடன்	2-hydroxy,5,5-dimethyl
IUPAC வயர்	2-hydroxy-5,5-dimethylhexan-3-one
	2-hydroxy-5,5-dimethyl-3-hexanone

	СН₃ СН₃ ℃Н₃℃=℃НСО₂Н Ӧ		
ம்க நீண்ட காபன் சங்க்ல	6C அணுக்கள் - hex		
உயர்ந்த முன்னூரிமையுடைய தொழிற்பாட்டுக் கூட்டம் அதன் நிலையும்	oic acid		
இரட்டை/மும்மைப் பிணைப்பு அதன் நிலையுடன்	4-ene		
பெற்றார் ஐதரோக்காபன் பெயர்	hex-4-ene (4-hexene)		
பிரதியீடுகள் அவற்றின் நிலைகளுடன்	3-oxo, 2-methyl, 5-methyl		
IUPAC பெயர்	2,5-dimethyl-3-oxohex-4-enoic acid 2,5-dimethyl-3-oxo-4-hexenoic acid		

	CH ₃ CH ₃ CH ₃ C=CH ² CH ₂ NH ₂ OH
மிக நீண்ட காபன் சங்கிலி	6C அணுக்கள் - hex
உயர்ந்த முன்னூரிமையுடைய தொழிற்பாட்டுக் கூட்டம் அதன் நிலையும்	3-ol
இரட்டை/மும்மைப் பிணைப்பு அதன் நிலையுடன்	4-ene
பெற்றார் ஐதரோக்காபன் பெயர்	hex-4-ene (4-hexene)
பிரதியீடுகள் அவற்றின் நிலைகளுடன்	1-amino, 2,5-dimethyl
IUPAC பெயர்	1-amino-2,5-dimethylhex-4-en-3-ol 1-amino-2,5-dimethyl-4-hexen-3-ol

	Сн ₃ たн ₃ снссн ₂ сн ₂ он о	
மீக <mark>நீ</mark> ண்ட காபன் சங்கிலி	5C அணுக்கள் - pent	
உயர்ந்த முன்னூரிமையுடைய தொழிர்பாட்டுக் கூட்டம் அதன் நிலையும்	3-one (எப்பக்கத்திலிருந்தும் எண்ணிடும்போது). இவ்வாறான வகையில், பிரதியீடுகளுக்கு குறைந்த எண்கள் கொடுக்கும் வகையில் எண்ணிடும் திசை தெரிவு செய்யப்படும்.	
பெற்றார் ஐதரோக்காபன் பெயர்	pentane	
பிரதியீடுகள் அவற்றின் நிலைகளுடன்	1-hydroxy, 4-methyl	
IUPAC பெயர்	1-hydroxy-4-methylpentan-3-one 1-hydroxy-4-methyl-3-pentanone	

	ОН Сн₂=2сніснсн₂5сн₃
மிக நீண்ட காபன் சங்கிலி	5C அணுக்கள் - pent
உயர்ந்த முன்னூரிமையுடைய தொழிற்பாட்டுக் கூட்டம் அதன் நிலையும்	3-ol (எப்பக்கத்திலிருந்தும் எண்ணிடும்போது). இந்த வகையில், இரட்டைப் பிணைப்பிற்கு சாத்தியமான மிகக் குறைந்த எண் வழங்க வேண்டும்.
இரட்டை/மும்மைப் பிணைப்பு அதன் நிலையுடன்	1-ene
பெற்றார் ஐதரோக்காபன் பெயர்	pent-1-ene (1-pentene)
பிரதியீடுகள் அவற்றின் நிலைகளுடன்	காணப்படவில்லை
IUPAC பெயர்	pent-1-en-3-ol
	1-penten-3-ol

	O CH ₃ ¹ CH ₂ =C-C-CHCH ₂ OH CH ₃
மிக நீண்ட காபன் சங்கிலி	5C அணுக்கள்- pent
உயர்ந்த முன்னூரிமையுடைய தொழிர்பாட்டுக் கூட்டம் அதன் நிலையும்	3-one (எப்பக்கத்திலிருந்தும் எண்ணிடும்போது). இரட்டைப் பிணைப்பிற்கு மிகச் சாத்தியமான இழிவு கொடுக்கப்படல் வேண்டும். பிரதியீடு செய்யப்பட்ட அற்கீன், அற்கைன் என்பன எவ்வாறு பெயரிடப்பட்டன என்பதை நினைவு கூர்க.
இரட்டை/மும்மைப் பினைப்பு அதன் நிலையுடன்	1-ene
பெற்றார் ஐதரோக்காபன் பெயர்	pent-1-ene (1-pentene)
பிரதியீடுகள் அவற்றின் நிலைகளுடன்	5-hydroxy, 2,4-dimethyl
IUPAC பெயர்	5-hydroxy-2,4-dimethylpent-1-en-3-one 5-hydroxy-2,4-dimethyl-1-penten-3-one

க.பொ.த. ((உ/த)	இரசாயனம்:	அலகு	7	சேதன	இரசாயனத்தின்	அடிப்படை	எண்ணக்கருக்கள்	
-----------	-------	-----------	------	---	------	--------------	----------	----------------	--

	O CH ₃ CH ₂ =C- ³ C+CHCH ₂ OH CH ₂ CH ₃
மீக நீண்ட காபன் சங்கிலி	5C அணுக்கள் - pent (hex அல்ல, காபன் சங்கிலி C=Cஐ உள்ளடக்க வேண்டும்).
உயர்ந்த முன்னூரிமையுடைய தொழிற்பாட்டுக் கூட்டம் அதன் நிலையும்	3-one
இரட்டை/மும்மைப் பினைப்பு அதன் நிலையுடன்	1-ene
பெற்றார் ஐதரோக்காபன் பெயர்	pent-1-ene (1-pentene)
பிரதியீடுகள் அவற்றின் நிலைகளுடன்	5-hydroxy, 2-ethyl, 4-methyl
IUPAC பெயர்	2-ethyl-5-hydroxy-4-methylpent-1-en-3-one 2-ethyl-5-hydroxy-4-methyl-1-penten-3-one

ஒரு சேர்வையின் (ஐதரோக்காபன்கள் தவிர்ந்த) IUPAC பெயரைக் கட்டியெழுப்புவதற்கான படிமுறையான வழியை இப்பொழுது நாம் சுருக்கமாகப் பார்ப்போம்.

- (1) முன்னுரிமை ஒழுங்கில் மிக உயர்ந்த இடத்தை வகிக்கும் தொழிற்பாட்டுக் கூட்டத்தையும் (தலைமைத் தொழிற்பாட்டுக் கூட்டம்) (அட்டவணை 1.6) ஏதாவது இரட்டை அல்லது மும்மைப் பிணைப்புகளையும் உடைய மிக நீண்ட ஐதரோக்காபன் சங்கிலியை இனங்காண்க.
- (2) ஐதரோக்காபன் சங்கிலியை எண்ணிடுக:
 - (a) தலைமைத் தொழிற்பாட்டுக் கூட்டம் மிகத் தாழ்ந்த சாத்தியமான எண்ணைப் பெறுமாறு
 - (b) வெவ்வேறு திசைகளில் ஐதரோக்காபன் சங்கிலியை எண்ணிடும்போது தலைமைத் தொழிற்பாட்டுக் கூட்டம் சமமான எண்ணைப் பெறின், பன்மைப் பிணைப்பிற்கு மிகத் தாழ்ந்த எண்ணைப் பெறுமாறு எண்ணிடும் திசை தெரிவு செய்யப்படும்.
 - (c) வெவ்வேறு திசைகளில் ஐதரோக்காபன் சங்கிலி எண்ணிடப்படும்போது தலைமைத் தொழிற்பாட்டுக் கூட்டம் சமமான எண்ணைப் பெற்று, பன்மைப் பிணைப்புகள் காணப் படாவிடின், பிரதியீடுகளுக்கு மிகத் தாழ்ந்த எண்கள் கொடுக்குமாறு எண்ணிடும் திசை தெரிவு செய்யப்படும்.
- (3) C அணுக்களின் எண்ணிக்கைக்கேற்ப வழங்கப்பட்ட பெயரை உபயோகித்து ஐதரோக்காபன் பெயரைப் பெறுக. அத்துடன் நிரம்பிய அல்லது நிரம்பாத் தன்மை அதன் நிலை எண்ணுடன் (ane, ene அல்லது yne) குறிப்பிட்ட பிற்சேர்க்கையைப் பெறுக.
- (4) தலைமைத் தொழிற்பாட்டுக் கூட்டத்தைக் குறிக்கும் பிற்சேர்க்கையைச் சேர்க்க.
- (5) பிரதியீட்டுக் கூட்டங்களைக் குறிக்கும் முற்சேர்க்கைகளை அவற்றிற்குரிய நிலை எண்களுடன் சேர்க்க.

(6) பின்பு IUPAC பெயரைப் பின்வருமாறு கட்டியெழுப்புக.

முற்சேர்க்கை +	ஐதரோக்காபன் பெயர்	+	பிற்சேர்க்கை
பிரதியீட்டுக் கூட்டங்கள் அவற்றின் நிலை எண்களுடன்	C அணுக்களின் எண்ணிக்கை யுடன் நிரம்பிய அல்லது நிரம்பாத் தன்மை அதன் நிலை		தலைமைப் பிரதான கூட்டத்தின் வகுப்புப் பெயர்
<u> </u>	ைக் குறிக்கும் எண்ணுடன்		<i>,</i>

அதற்கான பிற்சேர்க்கை

பொதுப் பெயர்கள்

முறைமையான பெயரீட்டு முறை விருத்தியாக்கப்பட முன்பு பயன்படுத்திய சேதனச் சேர்வைகளின் பொதுப் பெயர்கள் இப்பொழுதும் இரசாயன விஞ்ஞானிகளினால் பயன்படுத்தப்படுவதால் இப்பெயர்களை அறிந்திருத்தல் நன்று. சில பொதுவான சேர்வைகளின் பொதுப் பெயர்களும் அவற்றின் IUPAC பெயர்களும் அட்டவணை 1.7 இல் தரப்பட்டுள்ளன.

அட்டவணை 1.7: சில பொதுவான சேர்வைகளின் பொதுப் பெயர்களும் அவற்றின் IUPAC பெயர்கள்

சேர்வை	பொதுப் பெயர்	IUPAC வெயர்
CH ₃ COOH	அசற்றிக் அமிலம்	ethanoic acid
CH ₃ CHO	அசற்றல்டிகைட்டு	ethanal
CH ₃ COCH ₃	அசற்றோன்	propanone
CH ₃ CN	அசற்றோநைத்திரைல்	ethanenitrile
H-C=C-H	அசற்றலீன்	ethyne
CHCl ₃	குளோரோபோம்	trichloromethane
HOCH ₂ CH ₂ OH	எதிலீன் கிளைக்கோல்	ethane-1,2-diol
HCHO	போமல்டிகைட்டு	methanal
HCOOH	போமிக்கு அமிலம்	methanoic acid

1.4 சமபகுதியச் சேர்வு

ஒரே மூலக்கூற்றுச் சூத்திரத்தையுடைய வெவ்வேறு சேர்வைகளின் இருக்கை சமபகுதியச் சேர்வு ஆகும். ஒரே மூலக்கூற்றுச் சூத்திரத்தையுடைய வெவ்வேறு சேர்வைகள் சமபகுதியங்கள் என அழைக்கப்படும். சமபகுதியங்களைக் கட்டமைப்புச் சமபகுதியங்கள், திண்மத் தோற்றச் சமபகுதியங்கள் என உபபிரிவுகளாகப் பிரிக்கலாம்.

1.4.1 கட்டமைப்பு சமபகுதியச் சேர்வு

அமைப்புக் கூற்று அணுக்கள் இணைக்கப்பட்ட விதத்தில் ஒன்றிலிருந்து மற்றையது வேறுபடும் சமபகுதியங்கள் **கட்டமைப்புச் சமபகுதியங்கள்** என அழைக்கப்படும். எனவே அவை வேறுபட்ட கட்டமைப்புச் சூத்திரங்கள் உடையன. கட்டமைப்புச் சமபகுதியங்களின் சில உதாரணங்கள் அட்டவணை 1.8 இல் காட்டப்பட்டுள்ளன.

மூலக்கூற்றுச் சூத்திரம்	கட்டமைப்புச் சமபகுதியங்கள்				
C ₅ H ₁₂	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	CH ₃ CH ₃ CHCH ₂ CH ₃	CH3 CH3CCH3 CH3		
C ₃ H ₈ O	CH ₃ CH ₂ CH ₂ OH	СН ₃ СН ₃ с́НОН	CH ₃ CH ₂ OCH ₃		
C₄H ₈ O	H CH ₃ CH ₂ CH ₂ C=0	CH₃ CH₃ĊHÇ=O H	CH ₃ CH ₃ CH ₂ C=0		

அட்டவணை 1.8: கட்டமைப்புச் சமபகுதியங்களின் சில உதாரணங்கள்

கட்டமைப்புச் சமபகுதியங்கள் பொதுவாக சங்கிலிச் சமபகுதியங்கள், நிலைச் சமபகுதியங்கள், தொழிற்பாட்டுக் கூட்டச் சமபகுதியங்கள் என உபபிரிவுகளாகப் பாகுபடுத்தப்பட்டுள்ளன. இந்த உபபிரிவுகள் பிரத்தியேகமானதல்ல, மேற்பொருத்தலாம்.

சங்கிலிச் சமபகுதியங்கள்: ஒரே மூலக்கூற்றுச் சூத்திரத்திற்கு வேறுபட்ட ஐதரோக்காபன் சங்கிலிகளை உடையன சங்கிலிச் சமபகுதியங்கள் ஆகும். (உரு 1.10)

$$\begin{array}{ccc} \mathsf{CH}_3 & \mathsf{CH}_3\\ \mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{OH} & \mathsf{CH}_3\dot{\mathsf{C}}\mathsf{H}\mathsf{CH}_2\mathsf{CH}_2\mathsf{OH} & \mathsf{CH}_3\dot{\mathsf{C}}\mathsf{CH}_2\mathsf{OH}\\ \mathsf{CH}_3\dot{\mathsf{C}}\mathsf{H}_3 & \dot{\mathsf{C}}\mathsf{H}_3\end{array}$$

உரு 1.10 C₅H₁₂O மூலக்கூற்றுச் சூத்திரத்திற்கான சங்கிலிச் சமபகுதியங்கள்

நிலைச் சமபகுதியங்கள்: ஒரே காபன் சங்கிலியில் ஒரே தொழிற்பாட்டுக் கூட்டத்தினதும் அல்லது பிரதியீடுகளின் நிலை வேறுபட்ட சமபகுதியங்கள் நிலைச் சமபகுதியங்கள் ஆகும். (உரு 1.11)

OH
CH_3CH_2CH_2OHOH
CH_3CHCH_3CH_3CH_2C \equiv CH
CH_3C \equiv CCH_31-propanol2-propanol1-butyne2-butyne C_3H_8O மூலக்கூற்றுச் சூத்திரத்திற்கான
நிலைச் சமபகுதியங்கள் C_4H_6 மூலக்கூற்றுச் சூத்திரத்திற்கான
நிலைச் சமபகுதியங்கள்இலைச் சமபகுதியங்கள்

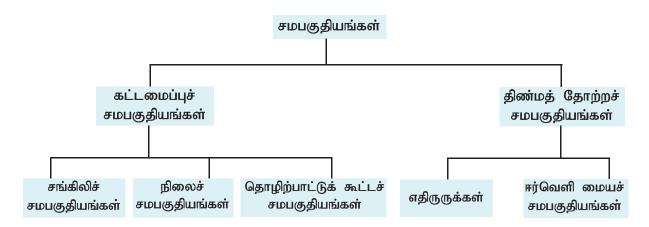
உரு 1.11 நிலைச் சமபகுதியங்களுக்கு உதாரணங்கள்

தொழிந்பாட்டுச் சமபகுதியங்கள்: ஒரே மூலக்கூற்றுச் சூத்திரமுடைய சேர்வைகளில் வேறுபட்ட தொழிற்பாட்டுக் கூட்டங்களையுடையவை தொழிற்பாட்டுக் கூட்டச் சமபகுதியங்கள் ஆகும் (உரு 1.12).

CH ₃ CH ₂ CH ₂ OH	CH ₃ CH ₂ OCH ₃	О Н ₃ СН ₂ СН	O CH ₃ CCH ₃
1-propanol	ethylmethylether	propanal	propanone
C ₃ H ₈ O மூலக்கூற்றுச் உடையனவற்றுக்குர் கூட்டச் சமபகுதியங்	ிய தொழிற்பாட்டுக்	5 0	ற்றுச் சூத்திரத்தை க்குரிய தொழிற்பாட்டுக் 1யங்கள்

உரு 1.12 தொழிற்பாட்டுக் கூட்டச் சமபகுதியங்களுக்கு உதாரணங்கள்

சங்கிலிச் சமபகுதியச் சேர்வு, நிலைச் சமபகுதியச் சேர்வு, தொழிற்பாட்டுக் கூட்டச் சமபகுதியச் சேர்வு என்பன மேற்பொருந்தலாம். C₄H₈O மூலக்கூற்றுச் சூத்திரத்திற்கு வரையப்பட்ட சமபகுதியங்களைப் பார்க்க (உரு 1.13)


 $\begin{array}{cccc} & \begin{array}{c} CH_3 & O \\ CH_3CH_2CH_2CHO & CH_3CHCHO & CH_3CCH_2CH_3 \end{array} \\ CH_2=CHCH_2CH_2OH & CH_3CH=CHCH_2OH \end{array} \\ CH_2=CHCH_2OCH_3 & CH_3CH=CHOCH_3 & CH_2=CHOCH_2CH_3 \end{array} \\ \begin{array}{c} CH_3 & CH_3 & CH_2=CHOCH_2CH_3 \end{array} \\ CH_2=CCH_2OH & CH_2=COCH_3 & OH \\ CH_2=COCH_2OH & CH_2=COCH_3 & CH_3CHCH=CH_2 \end{array} \end{array}$

உரு 1.13 C₄H₈O மூலக்கூற்றுச் சூத்திரத்திற்குரிய கட்டமைப்புச் சமபகுதியங்கள்

1.4.2 திண்மத் தோற்றத் சமபகுதியச் சேர்வு

முப்பரிமாண வெளியில் பிணைப்புகளின் ஒழுங்காக்கம் மட்டும் ஒன்றிலிருந்தொன்று வேறுபட்ட கட்டமைப்புடைய சேர்வைகளின் இருக்கை திண்மத்தோற்ற சமபகுதியச் சேர்வு எனப்படும். திண்மத் தோற்றச் சமபகுதியங்கள் ஒரே கட்டமைப்புச் சூத்திரத்தையுடையன. அவை ஒரே இணைப்பை உடையன. அவற்றின் அமைப்புக்கூற்று அணுக்கள் ஒரே ஒழுங்கில் இணைக்கப் பட்டுள்ளன. ஆனால் முப்பரிமாண வெளியில் அணுக்கள் அல்லது கூட்டங்கள் ஒழுங்குபடுத்தப் பட்ட விதத்தில் வேறுபட்டன. எனவே அவற்றின் கட்டமைப்புகள் ஒரே மூலக்கூற்றுச் சூத்திரம், ஒரே கட்டமைப்புச் சூத்திரம் ஆகியவற்றைக் கொண்டிருந்தாலும் ஒன்றன் மீது ஒன்று மேற்பொருந்த மாட்டா. ஆடி - விம்பமாக உள்ள திண்மத் தோற்றக் கட்டமைப்புகளையுடைய திண்மத் தோற்றச் சமபகுதியங்களின் சோடி எதிருருக்கள் ஆகும். ஆடி - விம்பமாக இல்லாத கட்டமைப்புகள் உடைய திண்மத் தோற்றச் சமபகுதியங்களின் சோடி ஈர்வெளிமையச் சமபகுதியங்களாகும்.

மேலே விபரிக்கப்பட்ட வெவ்வேறு வகைச் சமபகுதியங்கள், அவற்றின் பாகுபாடு உரு 1.14 இல் காட்டப்பட்டுள்ளது.

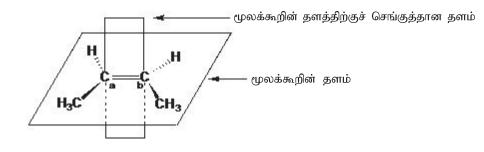
உரு 1.14 சமபகுதியங்களின் பாகுபாடு

ஈர்வெளி மையச் சமபகுதியச் சேர்வு

கேத்திரகணித சமபகுதியச் சேர்வு, ஈர்வெளி மையச் சமபகுதியச் சேர்வு காணப்படும் ஒரு சந்தர்ப்பமாகும். ஒரு C=C இரட்டைப் பிணைப்பு ஒரு σ - பிணைப்பையும் ஒரு π - பிணைப்பையும் உடையது. π – பிணைப்புக் காரணமாக இரு காபன் அணுக்களும் σ - பிணைப்புப் பற்றிச் சுயாதீனமாகச் சுழல முடியாது. அற்கீன் காபன் அணுக்கள் இரண்டும், அவற்றுடன் இணைந்த நான்கு அணுக்களும் ஒரே தளத்திலுள்ளன. கேத்திர கணித சமபகுதியங்கள் காணப்படுவதற்கு இரட்டைப் பிணைப்பின் ஒவ்வொரு காபன் அணுவுடன் இணைக்கப்பட்ட இரு கூட்டங்களும் ஒரே மாதிரியாக / ஒத்தனவாக இருத்தலாகாது. இவ்வாறான சந்தர்ப்பத்தில் இரு காபன் அணுக்களுக்கு இணைக்கப்பட்ட கூட்டங்கள் வெளியில் ஒழுங்குபடுத்தப்பட்ட விதத்தில் வேறுபடுமாறு இரு சேர்வைகள் காணப்படக்கூடிய சாத்தியம் உண்டு. இவ்விரு சேர்வைகளும் ஒன்றன் மேலொன்று மேற்பொருந்த மாட்டா. காபன் - காபன் பிணைப்பு அச்சு பற்றிச் சுழன்று ஒன்றிலிருந்து மற்றையதற்கு மாற்றப்பட முடியாது (π - பிணைப்பு காரணமாக). இவ்வாறான சேர்வைகள் கேத்திரகணித சமபகுதியங்கள் என அறியப்பட்டுள்ளன.

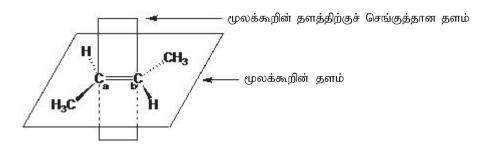
உதாரணமாக,

ஆகியவை ஈர்வெளிமையச் சமபகுதியங்களாகும். காரணம் கட்டமைப்புகள் ஒன்றன் மேலொன்று மேற்பொருந்தமாட்டா.


எனினும்,

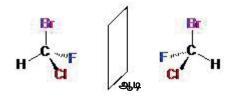
ஆகியன ஒத்தன. காரணம் கட்டமைப்புகள் ஒன்றன் மேலொன்று மேற்பொருந்தலாம்.

சிசு - திரான்சு (ஒருபக்கத்துக்குரிய - குறுக்கு) பெயரீடு


ஒரே இரட்டைப் பிணைப்பு வெவ்வேறு காபன் அணுக்களில் இணைக்கப்பட்ட இரு கூட்டங்களின் கேத்திரகணித தொடர்பைக் குறித்துக் காட்டுவதற்கு அற்கீன்களில் சிசு, திரான்சு சொற்கள் பயன்படுத்தப்படுகின்றன. C=C இரட்டைப் பிணைப்பிற்கூடாக மூலக்கூறின் தளத்திற்குச் செங்குத்தாகச் செல்லும் ஒரு தளத்தைக் கருதுக (உரு 1.15 ஐப் பார்க்க). இரு கூட்டங்களும் இத்தளத்தின் ஒரே பக்கத்தில் காணப்படின் தொடர்பு சிசு ஆகும். இதனை உரு 1.15 இல் அவதானிக்க. இரு H - அணுக்களும் ஒன்றுக்கொன்று சிசு ஆகும். இரு மெதைல் கூட்டங்களும் ஒன்றுக்கொன்று சிசு ஆகும்.

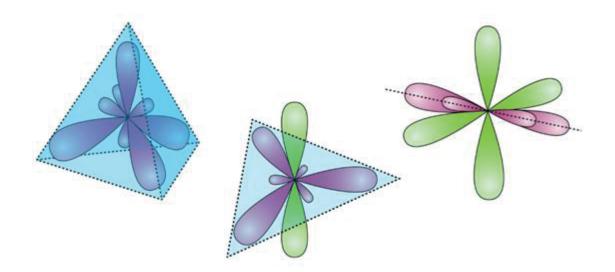
உரு 1.15 *cis*-2-butene

இரு கூட்டங்களும் தளத்திற்கு எதிர்ப் பக்கங்களில் காணப்படின் தொடர்பு திரான்சு ஆகும். C_a இலுள்ள மெதைல் கூட்டம் C_b இலுள்ள மெதைல் கூட்டத்திற்குத் திரான்சு நிலையிலுள்ளது (உரு 1.16).


cis-2-butene இன் கேத்திரகணித சமபகுதியம் *trans*-2-butene, இதில் இரு மெதைல் கூட்டங்களும் ஒன்றுக்கொன்று திரான்சு நிலையிலுள்ளன (இரண்டு H அணுக்களும் ஒன்றுக்கொன்று திரான்சு நிலையிலுள்ளன).

உரு 1.16 *trans*-2-butene

எதிருரு சமபகுதியச் சேர்வு


ஒன்றுக்கொன்று ஆடி - விம்பங்களாக உள்ள சமபகுதியங்கள் எதிருருக்கள் என அறியப்பட்டுள்ளன (உரு 1.17 ஐப் பார்க்க). நான்கு வெவ்வேறு கூட்டங்கள் ஒரு காபன் அணுவிற்கு இணைக்கப் பட்டதைக் கொண்ட ஒரு சேர்வை எதிருருச் சமபகுதியச் சேர்வையைக் காட்டும். இவ்வாறான ஒரு காபன் அணு சமச்சீரற்ற காபன் அணு அல்லது கைரல் காபன் அணு என அறியப்பட்டுள்ளது. ஒரு எதிருருவை உடைய கரைசலினூடு தளமுனைவாக்கப்பட்ட ஒளியைச் செலுத்தும்பொழுது, முனைவாக்கத் தளம் சுழலும். ஒரு எதிருரு முனைவாக்கத் தளத்தை ஒரு திசையில் சுழற்றும். மற்றைய எதிருரு எதிர்த்திசையில் சுழற்றும். எதிருருக்கள் முனைவாக்கத் தளத்தைச் சுழற்றுவதனால் ஒளி உயிர்ப்புள்ள சமபகுதியங்களாக அறியப்பட்டுள்ளன. தளமுனைவாக்கப்பட்ட ஒளியின் தளத்தைச் சுழற்றும் சேர்வைகள் ஒளி உயிர்ப்புள்ள சேர்வைகள் என அறியப்பட்டுள்ளன.

உரு 1.17 bromochlorofluoromethane இன் எதிருருக்கள்

ஒவ்வொன்றினதும் ஆடி விம்பங்கள் மேற்பொருந்தமாட்டாதன என்பதை அவதானிக்க.

குறிப்பு: ஒன்றுக்கொன்று ஆடி விம்பங்களாக இல்லாத திண்மத் தோற்றச் சமபகுதியங்கள் ஈர்வெளிசமபகுதியங்கள் என அறியப்பட்டுள்ளன. எனவே கேத்திரகணித சமபகுதியங்கள் ஈர்வெளிமையச் சமபகுதியங்களாகும்.

2. ஐதரோகாபன்களும் அலசன்சேர் ஐதரோகாபன்களும்

உள்ளடக்கம்

	லிபற்றிக் ஐதரோகாபன்களின் கட்டமைப்புக்கள்,	2.2.4 முடிவுநிலை ஐதரசனைக் கொண்டுள்ள
	பளதீக இயல்புகள் மற்றும் பிணைப்புகளின் ர்மை	அற்கைன்களின் $(-C\equiv C-H)$ அமிலத்தன்மை
2 .1		2.3 பென்சீனின் கட்டமைப்பு
2.1		2.3.1 பென்சீனின் கட்டமைப்பு
2.1	கட்டமைப்புக்கள்	2.3.1 பென்சனின் உறுதித்தன்மை 2.3.2 பென்சினின் உறுதித்தன்மை
2.1	•	2.3.2 യ്വങ്ങങ്ങൽ ഇവ്വത്തത്തെയ്
2.1	ஐதரோகாபன்களின் இயல்புகள்	2.4 பென்சீனின் உறுதியை உதாரணங்கள் மூலம்
2 1	.4 அற்கீன்களின் கட்டமைப்புக்கள்	விளக்குவதற்கான சிறப்பியல்பான தாக்கங்கள்
	.5 அற்கைன்களின் கட்டமைப்புக்கள்	வளக்குவதற்கான அற்பப்பல்பான தாக்கள்கள் 2.4.1 பென்சீனின் இலத்திரனாட்டப் பிரதியீட்டத்
2.1		2.4.1 பெள்சனின் இல்ததிரனாட்டப் பிரதியட்டத் காக்கங்கள்
2.2 கட்	டலமப்புக்களின் அடிப்படையில் அற்கேன்கள்,	தாகவங்கள் 2.4.1.1 நைத்திரேற்றம்
න	ற்கீன்கள் மற்றும் அற்கைன்களின் இரசாயனத்	2.4.1.2 பிரீடல் - கிராவ் (Friedel - Crafts) இன்
தா	க்கங்கள்	அற்கைலேற்றம்
2.2	2.1 அற்கேன்களின் தாக்கங்கள்	2.4.1.3 பிரீடல் - கிராவ் இன் ஏசைலேற்றம்
	2.2.1.1 அற்கேன்களின் குளோரினேற்றம்	2.4.1.4 அலசனேற்றம்
2.2	2.2 அற்கீன்களின் தாக்கங்கள்	2.4.2 பென்சீன் வளையத்தின் ஒட்சியேற்றத்திற்கான
	2.2.2.1 ஐதரசன் ஏலைட்டுக்களைச் (HCl,	ട്ടത്ഥ
	HBr, HI) சேர்த்தல்	2.4.3 பென்சீன் வளையத்தின் ஐதரனேற்றத்திற்கான
	2.2.2.2 அற்கீன்களுக்குள் புரோமீனைச்	ട്ടത്ഥ
	சேர்த்தல்	۲ ۲
	2.2.2.3 சல்பூரிக் அமிலத்தைச் சேர்த்தலும்	2.5 ஒரு பிரதியீட்டுப் பென்சீனிலுள்ள பிரதியீட்டுத்
	கூட்டல் விளைவின் நீர்ப்பகுப்பும்	தொகுதிகளின் திசைப்படுத்தும் இயல்பு
	2.2.2.4 ஊக்கிக்குரிய ஐதரசனின் கூட்டல்	2.5.1 ஒதோ, பரா திசைப்படுத்தும் தொகுதிகள்
	(ஐதரனேற்றம்)	2.5.2 மெற்றா திசைப்படுத்தும் தொகுதிகள்
	2.2.2.5 அற்கீன்களுடன் ஐதான குளிர் கார	
2.2	KMnO ₄ இன் தாக்கங்கள் 2.3 அற்கைன்களின் தாக்கங்கள்	2.6 அற்கைல் ஏலைட்டுக்களின் கட்டமைப்புக்களும்
2.2	அறகைனகளான தாககங்கள் 2.2.3.1 புரோமீனைச் சேர்த்தல்	தாக்கங்களும்
	2.2.3.2 ஐதரசன் ஏலைட்டுக்களைச் சேர்த்தல	
	2.2.3.3 நீரைச் சேர்த்தல்	2.7 பிணைப்பு உண்டாதல் பிணைப்பு உடைதல் நேரத்தின்
	2.2.3.4 ஊக்கி முன்னிலையில் ஐதரசனைச்	அடிப்படையில் அற்கைல் ஏலைட்டுக்களின் கருநாட்டப்
	சேர்த்தல் (ஐதரனேற்றம்)	பிரதியீட்டுத் தாக்கங்கள்

அறீமுகம்

காபனையும் ஐதரசனையும் மாத்திரம் கொண்டுள்ள சேர்வைகள் ஐதரோகாபன்களாகும். அலிபற்றிக் ஐதரோகாபன்களை அற்கேன்கள், அற்கீன்கள், அற்கைன்கள் எனப் பாகுபடுத்தப்பட்டுள்ளதாக ஏற்கனவே நாம் கலந்துரையாடியுள்ளோம். காபன், ஐதரசனிற்கு மேலதிகமாக ஒன்று அல்லது ஒன்றுக்கு மேற்பட்ட அலசன் அணுக்களைக் கொண்டுள்ள சேர்வைகள் அலசன்சேர் ஐதரோ காபன்களாகும்.

2.1 அலிபற்றிக் ஐதரோகாபன்களின் கட்டமைப்புக்கள், பௌதீக இயல்புகள் மற்றும் பிணைப்புக்களின் தன்மை

அற்கேன் ஐதரோகாபன்கள் நிரம்பிய ஐதரோகாபன்களாகும். இச்சேர்வைகளில் காபன் - ஐதரசன், காபன் - காபன் ஒற்றைப் பிணைப்புக்கள் மாத்திரம் காணப்படுகின்றன. எளிய அற்கேன் ஐதரோ காபன் மெதேனாகும் (CH_4) . அத்துடன் இது ஒரு காபன் அணுவை மாத்திரம் கொண்டுள்ளது. நான்கு ஐதரசன் அணுக்கள் இக் காபன் அணுவிற்கு நான்கு ஒற்றைப் பிணைப்புக்களால் இணைக்கப்பட்டுள்ளன. இரண்டு காபன் அணுக்களைக் கொண்டுள்ள அற்கேன் எதேனாகும் (C_2H_6) . எதேனில் இரு காபன் அணுக்களும் ஒற்றைப் பிணைப்பில் ஒன்றுடன் ஒன்று பிணைப்பை ஏற்படுத்தியுள்ளன. அத்துடன் இக் காபன் அணுக்கள் ஒவ்வொன்றும் மூன்று ஐதரசன் அணுக்களுடன் பிணைப்பை ஏற்படுத்தியுள்ளன. மூன்று காபன் அணுக்களை உடைய அற்கேன் புரொப்பேனாகும் (C_3H_8) . எதேனின் சூத்திரமானது மெதேனிலிருந்து CH_2 ஆல் வித்தியாசப்படுவதை கவனிக்கக்கூடியதாக உள்ளது. புரொப்பேனின் சூத்திரமும் எதேனின் சூத்திரத்திலிருந்து CH_2 ஆல் வித்தியாசப்படுகின்றது. சேர்வைகளின் தொடரில் அடுத்தடுத்த இரு உறுப்பினர்களின் மூலக்கூற்றுச் சூத்திரம் CH_2 அலகால் வித்தியாசப்பட்டால், அவ்வாறான சேர்வைகளின் தொடர் அமைப்பொத்த தொடர் என அழைக்கப்படும்.

அமைப்பொத்த தொடரானது ஒரே இரசாயன இயல்புகளையும் ஒரே பொதுச் சூத்திரத்தையுமுடைய சேர்வைகளின் தொடர் ஒன்றில் அடுத்தடுத்த உறுப்பினர்கள் CH₂ அலகால் வித்தியாசப்படுவதுமான சேர்வைகளின் தொடராகும். அற்கேன்களின் பொதுச் சூத்திரம் C_nH_{2n+2} (n = 1, 2, 3,) ஆகும். அத்துடன் சக்கர அற்கேன்கள் தவிர்ந்த ஏனைய அற்கேன்கள் இப் பொதுச்சூத்திரத்தைப் பின்பற்றுவன.

2.1.1 அற்கேன் ஐதரோக்காபன்களின் இயல்புகள்

அற்கேன் மூலக்கூறானது முனைவற்றது அல்லது மிகவும் குறைவான முனைவுள்ளது. இரு முனைவற்ற மூலக்கூறுகளுக்கிடையிலான கவர்ச்சி விசை கலைவு விசைகள்(dispersion) ஆகும். அதேசமயம் தொடரில் முதல் சில உறுப்பினர்கள் அறைவெப்பநிலையில் வாயுக்களாகும். உயர் உறுப்பினர்கள் திரவங்கள் அல்லது திண்மங்களாகும். தொடரில் கீழே செல்லும்போது மூலக்கூறுகளின் மேற்பரப்பு அதிகரிப்பதன் விளைவாகக் கலைவு விசைகளும் அதிகரித்துச் செல்லும். எனவே இது மேற்கூறிய அற்கேன்களின் பௌதீக நிலைகளின் வேறுபாட்டிற்கு

முன்னெடுத்துச் செல்வதாகும். அத்துடன் இதன் விளைவாக கிளைக்கப்படாத அற்கேன்களின் மூலக்கூற்று நிறை அதிகரிப்புடன் கொதிநிலைகளும் உருகுநிலைகளும் அதிகரிக்கும் (அட்டவணை 2.1).

அட்டவணை 2.1 நேர்ச்சங்கிலி அற்கேன்கள் சிலவற்றின் கொதிநிலைகள், உருகுநிலைகள், அடர்த்திகள் என்பன காபன் எண்ணிக்கை அதிகரிப்புடன் சீராக அதிகரிப் பைக் காட்டுகின்றன.

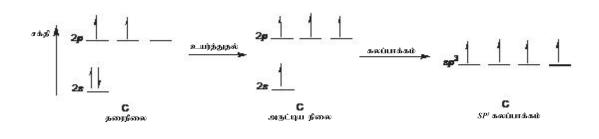
பெயர்	சூத்திரம்	உருகுநிலை/ ℃	கொதிநிலை∕ ⁰C	அடர்த்தி (20°C)/ g cm ⁻³
methane மெதேன்	CH_4	-183	-162	
ethane எதேன்	CH ₃ CH ₃	-172	-88.5	
propane புரொப்பே	CH ₃ CH ₂ CH ₃ ன்	-187	-42	
butane பியூற்றேன	СН ₃ (CH ₂) ₂ CH ₃	-138	-0.5	
pentane பென்ரேன்	CH ₃ (CH ₂) ₃ CH ₃	-130	36	0.626
hexane ஒக்சேன்	CH ₃ (CH ₂) ₄ CH ₃	-95	69	0.659
heptane எப்ரேன்	CH ₃ (CH ₂) ₅ CH ₃	-90.5	98	0.659
octane ஒக்ரேன்	CH ₃ (CH ₂) ₆ CH ₃	- 57	126	0.659
nonane நொனேன்	CH ₃ (CH ₂) ₇ CH ₃	- 54	151	0.718
decane டெக்கேன்	CH ₃ (CH ₂) ₈ CH ₃	- 30	174	0.730

அற்கேன்களின் காபன் சங்கிலி கிளைக்கப்படும்போது, மூலக்கூறுகளின் மேற்பரப்பு குறைவடைவ தால், இதன் காரணமாக கலைவு விசைகள் குறைவடைவதால் கொதிநிலைகள் குறைவடையும். அட்டவணை 2.2 இல் தரப்பட்டுள்ள தரவுகளிலிருந்து ஐந்து காபன் அணுக்களை உடைய அற்கேன்களின் கொதிநிலைகள் கிளைக்கப்படும் காபன் சங்கிலி அதிகரிப்புடன் குறைவடைவதைக் காணக்கூடியதாக உள்ளது.

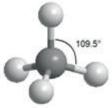

அட்டவணை 2.2 சமபகுதிய பென்ரேன்களில் கிளைக்கப்படுதல் இடம்பெறும்போது கொதிநிலைகள் குறைவடைதல்.

சேர்வை	கொதிநிலை∕ °C
Pentane	36
பென்ரேன்	
2-methylbutane	28
2-மீதைல்பியூற்றேன்	
2.2-dimethylpropane	9
2,2-இருமீதைல்புரொப்பேன்	

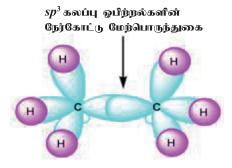
2.1.2 அற்கேன் ஐதரோக்காபன்களின் கட்டமைப்புக்கள்


எளிய அற்கேன் மெதேனின் (CH_4) பிணைப்புக்களைக் கருதுக. காபன் அணுவானது நான்கு ஐதரசன் அணுக்களுடன் நான்கு பங்கீட்டுப் பிணைப்புக்களை உருவாக்குகின்றது. பங்கீட்டுப் பிணைப்பானது இரு வெவ்வேறு அணுக்களின் ஒரு இலத்திரன்களைக் கொண்டுள்ள இரு ஓபிற்றல்களின் மேற்பொருந்துகையினால் உருவாகின்றது. காபன் அணு தரைநிலையில் ஒரு இலத்திரனைக் கொண்டுள்ள இரு p - ஓபிற்றல்களை மாத்திரம் கொண்டுள்ளதால் (p_x, p_y) ஒன்றுக்கொன்று செங்குத்தாக இரு பங்கீட்டுப் பிணைப்புக்களை உருவாக்க வேண்டும். (C அணுவின் தரைநிலை இலத்திரனிலையமைப்பை ஞாபகப்படுத்தல் $(1s^2 2s^2 2p^2)$. 2s ஓபிற்ற லிலுள்ள இரு இலத்திரன்களும் சோடியற்றதாக்கப்படுவதற்கு, ஒரு இலத்திரன் p_z ஓபிற்றலிற்கு உயர்த்தப்படும். எனவே காபன் அணுவானது தனி இலத்திரன்களைக் கொண்டுள்ள நான்கு ஓபிற்றல்களைக் கொண்டுள்ளதால் நான்கு ஐதரசன் அணுக்களுடன் நான்கு பிணைப்புக்களை உருவாக்கும். இலத்திரன்களைச் சோடியற்றதாக்குவதற்கும், இலத்திரனை உயர்த்துவதற்கும் தேவைப்படும் சக்தியானது மேலதிகமாக இரு பிணைப்புக்களை உருவாக்கும்போது வெளி விடப்படும் சக்தியால் ஈடுசெய்யப்படும்.

எவ்வாறாயினும் இவ்வாறான மேற்பொருந்துகையின் விளைவால் CH₄ மூலக்கூறில் மூன்று பிணைப்புக்களும் ஒன்றுக்கொன்று / ஒன்றுடன் ஒன்று செங்குத்தாகவும் மற்றும் ஒரு C–H பிணைப்பானது எந்த ஒரு திசையையும் கொண்டிருக்கமாட்டாது. இது மெதேன் மூலக்கூறானது இரு வகைகளான C–H பிணைப்புக்களைக் கொண்டுள்ளதாக முன்னெடுத்துச் செல்லலாம். CH₄ இல் நான்கு பிணைப்புக்களும் சமமானவை என்னும் கருத்தை விளக்குவதற்கு 2*s* ஓபிற்றலும் மூன்று 2*p* ஓபிற்றல்களும் ஒன்றுடன் ஒன்று கலக்கப்பட்டு நான்கு சமமான ஓபிற்றல்களை நான்முகியின் உச்சியை நோக்கியதாக உருவாக்கும் எனக் கருதப்படும் (உரு 2.1).


உரு 2.1 காபன் அணுவின் *sp*³ கலப்பு ஓபிற்றல்களின் வடிவமும் ஒழுங்கமைப்பும்

ஓபிற்றல்கள் கலக்கப்பட்டு புதிய ஓபிற்றல்கள் உருவாக்கப்படுதல் கலப்பாக்கம் என்று பெயரிடப்படும். புதிய ஓபிற்றல்களைத் தூய அணு ஓபிற்றல்களிலிருந்து வேறுபடுத்துவதற்கு அவற்றைக் கலப்பாக்கப் பட்ட ஓபிற்றல்கள் என்று சொல்லப்படும். மெதேனில் அணுவின் நான்கு கலப்பு ஓபிற்றல்களும் sp^3 கலப்பு ஓபிற்றல்கள் என்று அழைக்கப்படும். இவை C அணுவின் s -ஓபிற்றலும் மூன்று p - ஓபிற்றல்களும் கலக்கப்பட்டு உருவாக்கப்படும். இவ்வாறான C அணுக்கள் sp^3 கலப்பு காபன் என்று குறிப்பிடப்படும் (referred). sp^3 கலப்பு ஓபிற்றல்களின் சக்தியானது s - ஓபிற்றலினதும் p - ஓபிற்றல்களினதும் சக்திக்குமிடையே இருக்கும் (உரு 2.2).


உரு 2.2 மெதேனிலுள்ள 4 காபன் அணுவின் கலப்பாக்கத்தை வரைபடத்தின் மூலம் எடுத்துக்காட்டல்

மெதேனில் காபன் அணுவின் *sp*³ கலப்பு ஒபிற்றல்கள் ஒவ்வொன்றும் நான்கு H அணுக்களின் *s* - ஓபிற்றல்கள் ஒவ்வொன்றுடனும் மேற்பொருந்துகைக்குட்பட்டு நான்கு C–H பிணைப்புக்களை உருவாக்கும். ஏதாவது இரு C–H பிணைப்புக்களிற்கு இடைப்பட்ட கோணம் 109.5[°] ஆகும். அத்துடன் மெதேனின் நான்கு ஐதரசன் அணுக்களும் நான்முகியின் உச்சியில் வைக்கப்படும் (located).

உரு 2.3 மெதேன் (CH₄) மூலக்கூறின் நான்முகி வடிவம்

எந்தவொரு சேதனச் சேர்வையிலுள்ள எல்லாக் காபன் அணுக்களும் நான்கு வேறு அணுக்களுடன் இணைக்கப்படும்போது அவை *sp*³ கலப்பாக்கத்திற்குட்பட்ட காபன் அணுக்கள் எனக் கருதப்படும். அற்கேனில் காபன் - ஐதரசன் பிணைப்புக்கள், காபன் அணுவின் *sp*³ - கலப்பு ஒபிற்றலும் ஐதரசன் அணுவின் 1*s* - ஒபிற்றலும் மேற்பொருந்துகைக்குட்படுவதால் உருவாக்கப்படும். அதேசமயம் (while) காபன் - காபன் பிணைப்புக்கள், இரு காபன் அணுக்களின் *sp*³ - கலப்பு ஓபிற்றல்கள் மேற்பொருந்துகைக்குட்படுவதால் உருவாக்கப்படும் (உரு2.4).

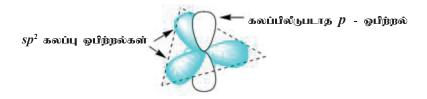
உரு 2.4 C–C மற்றும் C–H பிணைப்புக்களை உருவாக்கும் ஒபிற்றல்களின் மேற்பொருந்துகையைக் காட்டும் எதேனின் கட்டமைப்பு

இரு காபன் அணுக்களின் *sp*³ கலப்பு ஒபிற்றல்கள், ஒபிற்றல்களின் திசையின் வழியே மேற்பொருந்துகைக்குட்பட்டு காபன் - காபன் பிணைப்பை உருவாக்குகின்றன. இவ்வாறான மேற்பொருந்துகை நேர்கோட்டு மேற்பொருந்துகை என்று அழைக்கப்படும். அத்துடன் இதன் விளைவாக σ - பிணைப்பு உருவாகும்.

2.1.3 அந்கீன் மந்நும் அந்கைன் ஐதரோக்காபன்களின் இயல்புகள்

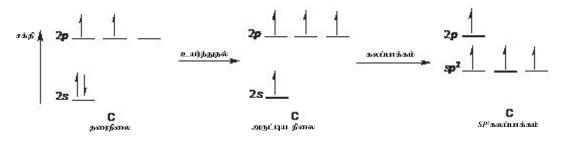
அற்கீன் மற்றும் அற்கைன் ஐதரோகாபன்கள் இரண்டும் நிரம்பாத சேர்வைகளாகும். அற்கீன்கள் குறைந்தது ஒரு காபன் - காபன் இரட்டைப் பிணைப்பைக் கொண்டிருக்கும் அதேவேளை அற்கைன்கள் குறைந்தது ஒரு காபன் - காபன் மும்மைப் பிணைப்பைக் கொண்டிருக்கும். ஒரு இரட்டைப் பிணைப்பைக் கொண்டுள்ளதும் மற்றும் வேறு தொழிற்படும் கூட்டங்களைக் கொண்டிராததுமான சக்கரமற்ற அற்கீன்கள் C_nH_{2n} என்னும் பொதுச் சூத்திரத்தையுடைய அற்கீன்களின் அமைப்பொத்த தொடரை உண்டாக்குகின்றன. ஒரு மும்மைப் பிணைப்பைக் கொண்டுள்ளதும் வேறு தொழிற்படும் கூட்டங்களைக் கொண்டிராததுமான அற்கைன்கள் டோடி_{2n-2} என்னும் பொதுச் சூத்திரத்தையுடைய அற்கைன்களின் அமைப்பொத்த தொடரை உண்டாக்குவன.

அற்கீன்களிலுள்ள காபன் - காபன் இரட்டைப் பிணைப்பும் அற்கைன்களிலுள்ள காபன் - காபன் மும்மைப் பிணைப்பும் அற்கேன்களிலுள்ள காபன் - காபன் ஒற்றைப் பிணைப்பிலும் வன்மையானதும் பிணைப்பு நீளம் குறைவானதுமாகும் (அட்டவணை 2.3).


அட்டவணை 2.3 காபன் - காபன் ஒற்றை, இரட்டை மற்றும் மும்மைப் பிணைப்புக்களின் பிணைப்புச் சக்திகளும் பிணைப்பு நீளங்களும்

பினைப்பு	பனைய்புச் சக்தி∕kJmol? ^L	பிணைப்பு நீளம் /pm
C–C	347	154
C=C	611	133
C=C	839	120

அற்கீன்களின் கொதிநிலைகள் அதே காபன் எண்ணிக்கையுடைய அற்கேன்களின் கொதிநிலை களிற்கு மிகவும் ஒத்ததாகக் காணப்படும். எதீன், புரொப்பீன் மற்றும் சமபகுதிய பியூற்றீன்கள் அறைவெப்பநிலையில் வாயுக்களாகும். ஏனைய அற்கீன்கள் எல்லாம் திரவங்களாகும். அற்கேன்கள் மாதிரி அற்கீன்களின் கொதிநிலைகளும் மூலக்கூற்று நிறை அதிகரிப்புடன் அதிகரிக்கும் (chain length). அற்கீன்களின் மூலக்கூறுகளின் பருமன் அதிகரிப்புடன் மூலக்கூற்றிடை கவர்ச்சி விசை களும் அதிகரிக்கும் அற்கைன்களின் முனைவுத்திறன் (polarity) குறைவானதாகையால், அவற்றின் பௌதீக இயல்புகள் அவற்றை ஒத்த அற்கேன்கள் மற்றும் அற்கீன்களின் பௌதீக இயல்புகளிற்கு மிகவும் அண்மித்ததாகக் காணப்படும்.

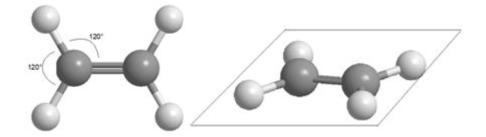

2.1.4 அற்கீன்களின் கட்டமைப்புக்கள்

எதீன் (C_2H_4) ஒரு மிக எளிய அற்கீனாகும். இது காபன் - காபன் இரட்டைப் பிணைப்பைக் கொண்டுள்ளது. எதீனினுள் ஒவ்வொரு காபன் அணுவும் sp^2 கலப்பிற்குட்பட்டதாகும். அத்துடன் இம் மூன்று ஒரேமாதிரியான (equivalent) / சமமான sp^2 கலப்பு ஓபிற்றல்களும் ஒரே தளத்திலும் சமபக்க முக்கோணியின் மூன்று உச்சிகளை நோக்கிய வண்ணம் இருக்கும் (ஒரு 2.5). கலப்பிலீடுபடாத p - ஓபிற்றல் இத்தளத்திற்குச் செங்குத்தாக (90°) இருக்கும்.

உரு 2.5 காபன் அணுவின் *sp*² கலப்பு ஒபிற்றல்களினதும் கலப்பிலீடுபடாத *p* - ஒபிற்றலினதும் வடிவமும் ஒழுங்கமைப்பும்

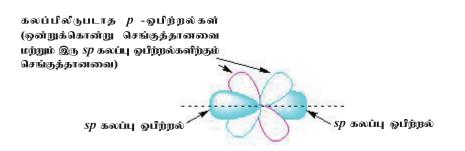
2*s* ஒபிற்றலுடன் இரு 2*p* ஒபிற்றல்கள் கலப்பிலீடுபடுவதால் மூன்று *sp*² கலப்பு ஒபிற்றல்கள் உருவாக்கப்படுகின்றன. கலப்பிலீடுபடாத p - ஒபிற்றல் விடுவிக்கப்படும் (உரு 2.6).

உரு 2.6 எதீனிலுள்ள C அணுவின் *sp*² கலப்பாக்கத்தை வரைபட மூலம் எடுத்துக் காட்டல்

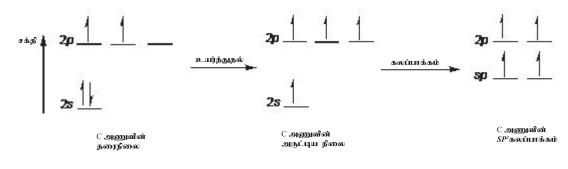

எதீனில் ஒவ்வொரு C அணுவும் இரு sp^2 கலப்பு ஓபிற்றல்களைப் பயன்படுத்தி இரு C–H பிணைப்புக்களை உருவாக்கும். ஒவ்வொரு C அணுவிலும் மீதியாகவுள்ள sp^2 கலப்பு ஓபிற்றலைப் பயன்படுத்தி நேர்கோட்டு மேற்பொருந்துகையினால் காபன் - காபன் ó - பிணைப்பு உருவாக்கப் படுகின்றது. ஒவ்வொரு காபன் அணுவிலும் கலப்பிலீடுபடாத *p* - ஓபிற்றல் ஒன்றுக்கொன்று சமாந்தரமாக இருக்கும். அவை பக்கவாட்டு மேற்பொருந்துகையினால் மற்றுமொரு காபன் -காபன் பிணைப்பை உருவாக்கும். ஓபிற்றல்களின் பக்கவாட்டு மேற்பொருந்துகையினால் உருவாக்கப்படும் இப்பிணைப்பு π - பிணைப்பு என்று அழைக்கப்படும். எல்லா அற்கீன்களும் ஒரு ó - பிணைப்பையும் ஒரு π - பிணைப்பையும் உடைய காபன் - காபன் இரட்டைப் பிணைப்பைக் கொண்டுள்ளன. π - பிணைப்பு 6 - பிணைப்பிலும் நலிவானது (உரு 2.7). ஜதரோகாபன்களும் அலசன்சேர் ஐதரோகாபன்களும்

*sp*² கலப்பு ஒபிந்நல்களின் நேர்கோட்டு மேந்பொருந்துகை

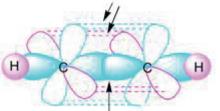
உரு 2.7 C–C, C–H பிணைப்புக்களை உருவாக்கும் காபன் அணுக்களினதும் ஐதரசன் அணுக்களினதும் ஒபிற்றல்களின் மேற்பொருந்துகையைக் காட்டும் எதீனின் கட்டமைப்பு


இரட்டைப் பிணைப்பை உருவாக்கும் இரண்டு காபன் அணுக்களும், அவற்றிற்கு இணைக்கப்படும் நான்கு ஐதரசன் அணுக்களும் ஒரே தளத்தில் இருக்கும். *sp*² கலப்பு காபனிற்கு இணைக்கப்பட்ட எந்த இரு அணுக்களிற்குமிடைப்பட்ட கோணம் 120° ஆகும் (உரு 2.8).

உரு 2.8 எதீன் (C₂H₄) மூலக்கூறின் தளமுக்கோணி வடிவம்


2.1.5 அந்கைன்களின் கட்டமைப்புக்கள்

எதைன் ஒரு எளிய அற்கைனாகும். இது காபன் - காபன் மும்மைப் பிணைப்பைக் கொண்டுள்ளது. எதைனிலுள்ள ஒவ்வொரு காபன் அணுவும் *sp* கலப்பிற்குட்பட்டதாகும். மற்றும் இவ்விரு சமமான *sp* கலப்பு ஒபிற்றல்களும் ஒன்றுக்கொன்று எதிரான திசைகளை நோக்கிய வண்ணம் ஒரே நேர்கோட்டில் இருக்கும் (உரு 2.9). கலப்பிலீடுபடாத இரு *p* - ஓபிற்றல்களும் மற்றும் இரு *sp* கலப்பு ஓபிற்றல்களும் ஒன்றுக்கொன்று செங்குத்தாக (90°) இருக்கும்.


உரு 2.9 காபன் அணுவின் *sp* கலப்பு ஒபிற்றல்களினதும் கலப்பிலீடுபடாத இரு *p* - ஒபிற்றல்களினதும் வடிவமும் ஒழுங்கமைப்பும்

C அணுவின் 2*s* ஒபிற்றலும் ஒரு 2*p* ஒபிற்றலும் கலப்பிற்குட்பட்டு இரு *sp* கலப்பு ஒபிற்றல்களை உருவாக்குகின்றன. கலப்பில் ஈடுபடாமல் இரு 2*p* ஓபிற்றல்கள் விடப்படும் (உரு 2.10).

உரு 2.10 எதைனில் காபன் அணுவின் *sp* கலப்பாக்கத்தை வரைபு மூலம் எடுத்துக்காட்டல்

எதைனில் ஒவ்வொரு காபன் அணுவும் ஒரு sp கலப்பு ஓபிற்றலைப் பயன்படுத்தி ஒவ்வொரு C–H பிணைப்பை உருவாக்குகிறது. ஒவ்வொரு C அணுவும் மீதியாகவுள்ள sp கலப்பு ஓபிற்றலைப் பயன்படுத்தி, நேர்கோட்டு மேற்பொருந்துகையினால் காபன் - காபன் ó - பிணைப்பை உருவாக்கு கிறது. ஒவ்வொரு காபன் அணுவினதும் கலப்பிலீடுபடாத இரு p - ஓபிற்றல்களினதும் பக்கவாட்டு மேற்பொருந்துகையினால் மற்றைய இரு காபன் - காபன் பிணைப்புக்கள் உருவாகின்றன (இரு π - பிணைப்புக்கள்). எல்லா அற்கைன்களும் ஒரு ó - பிணைப்பையும் இரு π - பிணைப்புக் களையுமுடைய காபன் - காபன் மும்மைப் பிணைப்புக்களைக் கொண்டுள்ளன (உரு 2.11).

p - ஒபிந்நல்களின் பக்கவாட்டு மேற்பொருந்துகை (π - பிணைப்பு)

sp கலப்பு ஒபிற்றல்களின் நேர்கோட்டு மேற்பொருந்துகை (ó - பிணைப்பு)

உரு 2.11 காபன் அணுக்களின் ஒபிற்றல்களின் மேற்பொருந்துகையினால் உருவாக்கப்படும் C–C மற்றும் C–H பிணைப்புக்களைக் காட்டும் எதைனின் கட்டமைப்பு

எதைனில் மும்மைப் பிணைப்பை உருவாக்கப் பயன்படுத்தப்படும் இரு காபன் அணுக்களும், அவற்றிற்கு நேரடியாக இணைக்கப்படும் இரு ஐதரசன் அணுக்களும் ஒரே நேர்கோட்டில் இருக்கும் *sp* கலப்பு, காபன் அணுவிற்கு இணைக்கப்படும் இரு அணுக்களுக்கிடையிலான கோணம் 180⁰ (உரு 2.12).

உரு 2.12 எதைன் (C₂H₂) மூலக்கூறின் நேர்கோட்டு வடிவம்

2.2 கட்டமைப்புக்களின் அடிப்படையில் அற்கேன்கள், அற்கீன்கள் மற்றும் அற்கைன்களின் இரசாயனத் தாக்கங்கள்

சேதனத் தாக்கங்களின்போது பிணைப்பு உடைதல்

எந்தச் சேதனத் தாக்கமும் பங்கீட்டுப் பிணைப்புக்கள் உடைதலுடனும் உண்டாதலுடனும் நிகழ்கிறது. பிணைப்பு உடைதல் இரு வெவ்வேறு வழிகளில் நடைபெறலாம்.

(i) பல்லினப் பிளவு

பல்லினப் பிளவில் பிணைப்பில் ஈடுபடும் இரு இலத்திரன்களும் இரு அணுக்களில் ஒரு அணுவில் தொடர்ந்து இருக்கும் (மின்னெதிர்த்தன்மை கூடிய அணு). இதன் விளைவாக நேர் ஏற்றமுள்ள துணிக்கைகளும் (கற்றயன்) மறை ஏற்றமுள்ள (அனயன்) துணிக்கைகளும் உண்டாக்கின்றன.

> A ⊷ B → A⁺ + ∶B் கற்றயன் அனபன்

தாக்கப் பொறிமுறைகளை எழுதும் பொழுது பல்லினப் பிளவு வளைந்த அம்புக்குறியினால் காட்டப்படுகிறது. இது ஒரு சோடி இலத்திரன்களின் அசைவைச் சுட்டிக் காட்டுகின்றது.

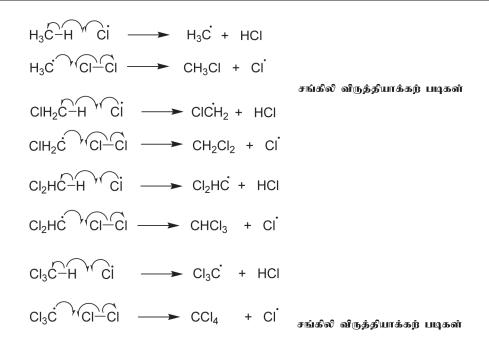
(ii) ஓரீனப் பீளவு

ஓரினப் பிளவில் பிணைப்பிலீடுபடும் இரு இலத்திரன்களும் சமமாகப் பிரிக்கப்படும். அதன் காரணமாக ஒவ்வொரு இலத்திரனும் ஒவ்வொரு அணுவில் தொடர்ந்து காணப்பகின்றது. இதன் விளைவாக ஒரு சோடியற்ற இலத்திரனைக் கொண்டுள்ள இரு நடுநிலையான துணிக்கைகள் உண்டாகும். இவ்வாறான துணிக்கைகள் சுயாதீன மூலிகங்கள் என அழைக்கப்படும்.

> A ⊷ B → A + B * சுயாதீன மூலிகங்கள் (நடுநிலையானவை)

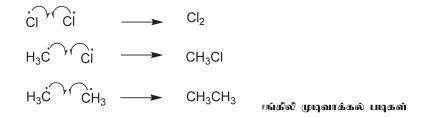
தாக்கப் பொறிமுறைகளை எழுதும் பொழுது ஓரினப் பிளவு ஒரு சோடி தூண்டில்களினால் (மீன்பிடிக்க உபயோகிக்கும் கொக்கி) காட்டப்படுகின்றது. ஒவ்வொரு தூண்டிலும் ஒரு தனி இலத்திரனின் அசைவைக் குறித்துக் காட்டுகிறது / சுட்டிக் காட்டுகிறது.

2.2.1 அற்கேன்களின் தாக்கங்கள்


அற்கேன்களில் எல்லாப் பிணைப்புக்களும் C–C அல்லது C–H பிணைப்புக்களாகும். C–C மற்றும் C–H பிணைப்புக்களின் முனைவுத் தன்மை குறைவாகையால், அற்கேன் உயர் நேரேற்றமுடைய (இலத்திரன் குறை) அல்லது மறை ஏற்றமுடைய (இலத்திரன் செறிவு) அணுக்களைக் கொண்டிருக்காது. எனவே அவை சாதாரண முனைவுச் சோதனைப் பொருட்களான OH⁻, CN⁻, H⁺ என்பனவற்றுடன் சாதாரண நிபந்தனைகளில் (normal conditions) தாக்கமடைய மாட்டாதன.

2.2.1.1 அற்கேன்களின் குளோரீனேற்றம்

அற்கேன்கள் சாதாரண முனைவுச் சோதனைப் பொருட்களுடன் தாக்கமடையாவிடினும், அவை சுயாதீன மூலிகங்களுடன் C–H பிணைப்புக்களின் ஓரினப் பிளவினால் தாக்கமடையும் போக்குடையன. உதாரணமாக அற்கேன்கள் சோதனைப் பொருட்களான குளோரீன் மற்றும் புரோமீன் சுயாதீன மூலிகங்களுடன் (Cl, Br) தாக்கமடைவன. இச் சுயாதீன மூலிகங்கள் Cl₂ மற்றும் Br₂ இன் ஓரினப் பிளவினால் உருவாக்கப்படுவன. Cl₂ அல்லது Br₂ உடன் uv கதிர்வீச்சி னால் அதனை அடைய முடிகிறது. எனவே மீதேன் uv கதிரின் முன்னிலையில் Cl₂ உடன் தாக்க மடைந்து குளோரேமீதேன் CH₃Cl, CH₂Cl₂, CHCl₃, CCl₄ கலவையைக் கொடுக்கும். இவ் விளைவுகள் தொடர்ச்சியான (இடைவிடாத) தாக்கங்களினால் உருவாக்கப்படும். இங்கு ஒரு தாக்கத்தின் விளைவு தொடர்ச்சியான தாக்கத்தில் அடுத்தடுத்த தாக்கங்களின் தொடக்கப் பொருளாகும். இவ்வாறான தாக்கங்கள் சங்கிலித் தாக்கங்கள் என அழைக்கப்படும்.


தாக்கத்தின் பொறிமுறை கீழே தரப்பட்டுள்ளது. இரு குளோரீன் அணுக்களிற்கிடையிலான பங்கீட்டுப் பிணைப்பின் ஓரினப் பிளவால் குளோரீன் சுயாதீன மூலிகங்கள் உருவாகுதல் இத்தாக்கத்தின் முதல் படியாகும். இது சங்கிலிக்குரிய தொடக்கப்படி என்று அழைக்கப்படுகிறது.

குளோரீன் சுயாதீன மூலிகம் மெதேனுடன் தாக்கமடைந்து மீதைல் சுயாதீன மூலிகத்தை உருவாக்கும் (•CH₃). இம் மீதைல் சுயாதீன மூலிகம் மற்றொரு குளோரீன் (Cl₂) மூலக்கூறுடன் தாக்கமடைந்து CH₃Cl ஐயும் Cl• ஐயும் கொடுக்கும். இப்படியில் உருவாக்கப்படும் குளோரீன் சுயாதீன மூலிகம் CH₄ மூலக்கூறுடன் அல்லது CH₃Cl மூலக்கூறுடன் தாக்கமடைந்து கீழே கொடுக்கப்பட்டுள்ள தொடர்த் தாக்கங்களில் காட்டப்பட்டுள்ளவாறு அவற்றிற்குரிய காபன் சுயாதீன மூலிகங்களை உருவாக்கும்.

இப்படிகள் சங்கிலிக்குரிய விருத்தியாக்கற் படிகள் என்று அழைக்கப்படும். இச் சங்கிலிக்குரிய விருத்தியாக்கற் படிகளில் சுயாதீன மூலிகங்கள் பயன்படுத்தப்படும் அல்லது உருவாக்கப்படும். எனவே CH₄ இலுள்ள எல்லா H அணுக்களும் Cl இனால் பிரதியீடு செய்யப்படும் வரை தாக்கத் தொடர் நிறுத்தப்படாமல் தொடர்ந்து நடைபெறும். மெதேனின் சுயாதீன மூலிக குளோரீனேற்றத்தில், இத்தாக்கத் தொடரில் உருவாக்கப்படும் காபன் சுயாதீன மூலிகங்கள் தாக்கக்கூடிய இடைநிலைகள் என்று அழைக்கப்படும்.

சங்கிலி முடிவாக்கத் தாக்கங்களின் மூலம் சங்கிலித் தாக்கம் நிறுத்தப்படலாம். சங்கிலித் தாக்கங்களின் பொழுது அனேக சங்கிலி முடிவாக்கல் தாக்கங்கள் நடைபெறலாம். இச் சங்கிலி முடிவாக்கல் தாக்கங்களில் சுயாதீன மூலிகங்கள் பயன்படுத்தப்படும். ஆனால் உருவாக்கப்படுவ தில்லை. ஒரு சில சங்கிலி முடிவாக்கல் தாக்கங்கள் கீழே காட்டப்பட்டுள்ளன.

அற்கேன்களின் சுயாதீன மூலிக குளோரீனேற்றத்தில் (மற்றும் புரோமீனேற்றம்) விளைவுகளின் கலவை பெறப்படும். ஆய்வுசாலையில் குளோரோ அல்லது புரோமோ ஐதரோகாபன்களின் தொகுப்பின் பயன்பாடு மட்டுப்படுத்தப்பட்டுள்ளது.

2.2.2 அற்கீன்களின் தாக்கங்கள்

அற்கீன்களின் தாக்கங்கள் காபன் - காபன் இரட்டைப் பிணைப்பில் நடைபெறும். காபன் -காபன் இரட்டைப் பிணைப்பு ஒரு σ - பிணைப்பாலும் மற்றும் ஒரு π - பிணைப்பாலும் உண்டாக்கப்பட்டுள்ளது. அற்கீனில் காபன் - காபன் σ - பிணைப்பின் தளத்திற்கு மேலாகவும் கீழாகவும் π - இலத்திரன் முகில் உள்ளதால் அற்கீனின் இரட்டைப் பிணைப்பானது இலத்திரன் செறிவு கூடிய இடமாகும். எனவே இது ஒரு சோடி இலத்திரன்களை ஏற்கக்கூடிய துணிக்கைகளைக் கவரக்கூடியதாகும். இவ்வாறான துணிக்கைகள் இலத்திரன் குறை துணிக்கைகளாகும். அத்துடன் இவை இலத்திரனாடிகள் என்றும் அறியப்படும்.

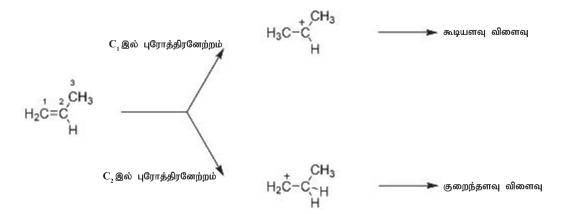
இரட்டைப் பிணைப்புடைய C அணுக்கள் ஒவ்வொன்றும் மூன்று அணுக்களுடன் மாத்திரம் பிணைப்பை ஏற்படுத்துவதால், அவை நிரம்பாதவை ஆகும். எனவே தாக்கத்தின்போது இன்னுமொரு அணு இவ்விரு காபன் அணுக்களில் ஒவ்வொன்றுடனும் இணைக்கப்படலாம். எனவே இவ்வாறான அற்கீன்களின் தாக்கங்கள் இலத்திரனாட்டக் கூட்டல் தாக்கங்களாகும்.

2.2.2.1 ஐதரசன் ஏலைட்டுக்களைச் சேர்த்தல் (HCl, HBr, HI)

ஐதரசன் ஏலைட்டு மூலக்கூறின் இலத்திரன் குறைவாக உள்ள முனைவு ஐதரசனாகும் (உதாரணம்:- H^{δ+}– Br^{δ−}). இது இலத்திரனாடியாகத் தொழிற்பட்டு ஆரம்பத்தில் இரட்டைப் பிணைப்புடன் தாக்கமடையும். தாக்கத்தின்போது H-Br பிணைப்பு உடைந்து Br⁻ ஐ விடுவிக்கும். எனவே ஐதரசன் H+ ஆகத் தாக்கி π - பிணைப்பிலிருந்து இரு இலத்திரன்களைப் பயன்படுத்தி காபனுடன் பிணைப்பை உண்டாக்கும்.

இவ்வாறான இலத்திரனாட்டக் கூட்டல் தாக்கங்களில் இடைநிலையாக காபோ கற்றயன்கள் உண்டாகும். *(காபோகற்றயன்கள் இலத்திரன் குறைவான நேரேற்றமுடைய மூன்று வலுவளவுள்ள காபன் துணிக்கைகளாகும்).*

எதீனுடன் HBr இன் கூட்டல் தாக்கத்திற்கான பொறிமுறையைக் கருதுக. இத்தாக்கம் இரு படிகளில் முன்னெடுத்துச் செல்லப்படும்.



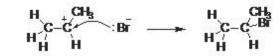
நேரேற்றமுடைய காபனிற்கு இணைக்கப்படும் ஐதரசன் அணுக்களின் எண்ணிக்கைக்கு ஏற்ப காபோகற்றயன்கள் முதல், வழி மற்றும் புடை காபோகற்றயன்கள் என வகைப்படுத்தப்படும்.

R R-C	>	H R−C	>	H H-C	>	H_C ⁺
R		R		R		Н
புடைக் காபோகற்றயன்		வழிக் காபோகற்றயன்		முதல் காபோகற்றயன்	க	மீதைல் 1போகந்நயன்

காபோகற்றயன்களின் உறுதியின் ஒழுங்கு பின்வருமாறு கீழே காட்டப்பட்டுள்ளது.

காபோகற்றயன்களின் நேரேற்றமுடைய காபனிற்கு இணைக்கப்படும் அற்கைல் கூட்டங்கள் அதிகரிக்கும்போது காபோகற்றயன்களின் உறுதி அதிகரிக்கிறது. இதற்கான காரணம் நேரேற்ற முடைய காபனிற்கு இணைக்கப்பட்ட அற்கைல் கூட்டங்கள் இலத்திரன்களை C–C பிணைப்பு மூலம் நேரேற்றமுடைய காபனிற்கு தள்ளுவதாலாகும். இதன் விளைவாக நேரேற்றம் நடுநிலைப் படுத்தப்படுவதால் அயன் (காபோகற்றயன்) உறுதியாக்கப்படும். சமச்சீரற்ற அற்கீன்கள் ஐதரசன் ஏலைட்டுக்களுடன் இலத்திரனாட்டக் கூட்டல் தாக்கத்தில் ஈடுபடும்போது இலத்திரனாடி (H⁺) பிணைப்பை ஏற்படுத்திய பின்பு இரு வெவ்வேறான காபோகற்றயன்கள் உருவாக்கப்படலாம். இவ்விரு காபோகற்றயன்களில் உறுதி கூடியது இலகுவாக உருவாகும். உதாரணமாக புரொப்பீன் HBr கூட்டல் தாக்கத்தைக் கருதுக.

இலத்திரனாடி மிக கூடியளவு ஐதரசன் அணுக்கள் இணைக்கப்பட்ட காபன் அணுவுடன் இணையும் போது மிக உறுதியான காபோகற்றயன் பெறப்படுகிறது. இது மார்க்கோனிக்கோவின் (Markovnikov's rule) விதிக்கான விளக்கமாகும். இது கூறுவது சமச்சீரற்ற அற்கீன்களுடன் ஒரு புரோத்திக் அமிலம் (HX) சேர்க்கப்பட்டால் H மிக கூடியளவு ஐதரசன் அணுக்கள் இணைக்கப்பட்ட காபனுடன் சேரும்.

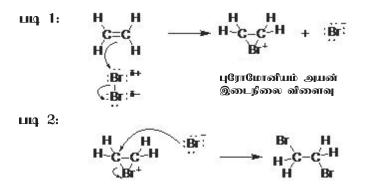

புரொப்பீனுடன் HBr இன் கூட்டல் தாக்கத்திற்கான பொறிமுறை பின்வருமாறு காட்டப்பட்டுள்ளது.

படி 1:

$$\begin{array}{ccc} H & CH_8 & H - BT & H & CH_8 \\ C = C & & & H & H & H \\ H & H & & H & H \end{array}$$

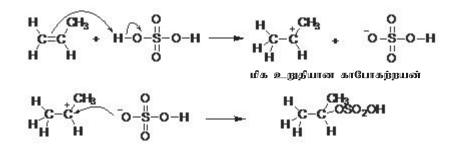
மிக உறுதியான காபோகற்றயன்

ца 2:

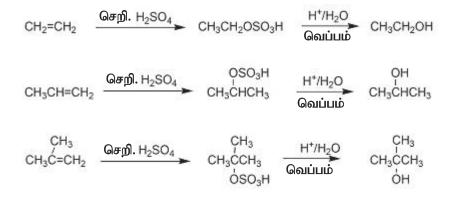

தாக்க ஊடகத்தில் பரஒட்சைட்டுக்கள் உள்ளபோது இவ்விதிக்கு (anti-Markovnikov addition) முரணாக ஐதரசன் புரோமைட் சேரும். (அதாவது H, குறைந்தளவு ஐதரசன் அணுக்கள் இணைக்கப்பட்ட C உடன் சேரும்). பரஒட்சைட்டுக்கள் முன்னிலையில் ஐதரசன் புரோமைட்டிற்கும் அற்கீன்களுக்குமான தாக்கமானது மேலே விபரிக்கப்பட்டுள்ளவாறு அயன் பொறிமுறை அல்லாது சுயாதீன மூலிகப் பொறிமுறை மூலம் நடைபெறுவது இதற்கான காரணமாகிறது. *இத்தாக்கத்திற் கான பொறிமுறைக்குரிய விபரிப்பு எதிர்பார்க்கப்படவில்லை.* பரஒட்சைட்டு முன்னிலையில் HCl மற்றும் HI சேர்க்கப்படுவதற்கான திசை மாற்றமடையவில்லை என்பதைக் குறிப்பிட வேண்டும்.

> CH₃CH=CH₂ + HBr (பரஒட்சைட்டு) CH₃CH₂CH₂Br

2.2.2.2 அற்கீன்களுக்குள் புரோமீனைச் சேர்த்தல்

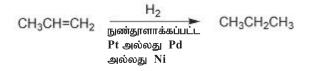

புரோமீன் முனைவாக்கமற்ற மூலக்கூறு. ஆனால் அற்கீன்களுடனான தாக்கத்தின்போது முனைவுத் தன்மை தூண்டப்படுகிறது. புரோமீன் மூலக்கூறானது இலத்திரன் செறிவுடைய இரட்டைப் பிணைப்பை அணுகும்போது, இரு முனைவு தூண்டப்பட்டு π - பிணைப்பிற்கு அருகிலுள்ள Br அணுப் பகுதி நேரேற்றத்தைக் கொண்டிருக்கிறது. தாக்கத்தின் முதல் படியில் இவ் Br அணு (நேர்த்தாக்கமுடைய) இரட்டைப் பிணைப்புடன் தாக்கமடைந்து புரோமோனியம் அயனை உருவாக்கும். இது Br இல் நேரேற்றத்தைக் கொண்டுள்ள மூன்று அணுக்களையுடைய சக்கர இடைநிலையாகும். மற்றும் Br⁻ உம் உருவாகும். தாக்கத்தின் இரண்டாவது படியில் புரோமைட்டு அயன் Br⁻ கருநாடியாகத் தொழிற்பட்டு, Br⁺ இற்கு இணைக்கப்பட்ட C அணுக்களில் ஒன்றுடன் பிணைப்பை உண்டாக்குகிறது. Br⁺ உடன் உருவாக்கப்பட்ட காபன் அணுவின் பிணைப்பு இப்படியின்போது உடைக்கப்பட்டு மீண்டும் திறந்த சங்கிலிச் சேர்வை பெறப்படும்.

பொறிமுறை பின்வருமாறு:


2.2.2.3 சல்பூரீக் அமிலத்தைச் சேர்த்தலும் கூட்டல் விளைவின் நீர்ப்பகுப்பும் அற்கீன்கள் குளிர் செறிந்த சல்பூரிக் அமிலத்துடன் தாக்கமடைந்து அற்கைல் ஐதரசன் சல்பேற்றை உருவாக்கும். இத் தாக்கம் இலத்திரனாட்டக் கூட்டல் தாக்கமாகும். அத்துடன் HBr இன் கூட்டல் தாக்கம் மாதிரி காபோகற்றயன் இடைநிலை மூலம் இத்தாக்கம் முன்னெடுத்துச் செல்லப்படும்.

43

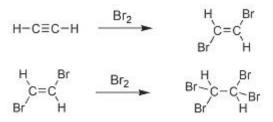
இத்தாக்கமானது வாயுநிலை அற்கீனை குளிர் செறிந்த சல்பூரிக் அமிலத்தினூடாகச் செலுத்துவதன் மூலம் அல்லது திரவ அற்கீனை குளிர் செறிந்த சல்பூரிக் அமிலத்துடன் கலக்குவதன் மூலம் நிறைவேற்றப்படும். அற்கைல் ஐதரசன் சல்பேற்றுக் கரைசலை நீருடன் ஐதாக்கி வெப்பமேற்றினால், அவை நீர்ப்பகுப்பிலீடுபட்டு ஆரம்ப அற்கைல் ஐதரசன் சல்பேற்றிலுள்ள அதே அற்கைல் கூட்டத்தைக் கொண்டுள்ள அற்ககோலைக் கொடுக்கும்.


இத்தாக்கத்திற்கான சில உதாரணங்களைக் கருதுக.

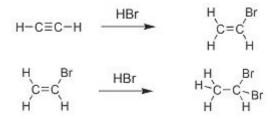
இத்தொடர் வரிசைத் தாக்கங்களின் இறுதி விளைவு அற்ககோலாக இருப்பதைக் காணலாம். இதனை மார்க்கோனிக்கோ விதிப்படி அற்கீனிற்குள் நீரைச் சேர்ப்பதன் மூலம் பெறலாம். அற்கீனிற்கு ஐதான சல்பூரிக் அமிலத்தின் முன்னிலையில் நீரைச் சேர்ப்பதன் மூலம் இதே விளைவுகளைப் பெறலாம். எனினும் எதீனிற்குள் நேரடியாக நீரைச் சேர்ப்பதன் மூலம் எதனோலைத் தயாரித்தல் ஆய்வுசாலை நிபந்தனைகளில் கடினமாகும்.

2.2.2.4 ஊக்கிக்குரிய ஐதரசனின் கூட்டல் (ஐதரசனேற்றம்)

அற்கீன்கள் நுண்தூளாக்கப்பட்ட Pt அல்லது Pd அல்லது Ni ஊக்கி முன்னிலையில் ஐதரசனுடன் தாக்கமடைந்து அற்கேன்களைக் கொடுக்கும்.


2.2.2.5 அற்கீன்களுடன் ஐதான குளீர் கார KMnO₄ இன் தாக்கங்கள்

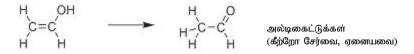
அற்கீன்கள் ஐதான குளிர் கார KMnO₄ உடன் தாக்கமடைந்து இரு ஒல்களை (கிளைக்கோல்கள்) உருவாக்கும். இத்தாக்கம் நடைபெறும்போது பரமங்கனேற்றின் ஊதா நிறம் அகற்றப்பட்டு கபில நிற MnO₂ வீழ்படிவு பெறப்படும். இத்தாக்கம் நிரம்பாத் தன்மையை பரிசோதிப்பதற்குப் பயன்படுத்தப்படும் (காபன் - காபன் இரட்டைப் பிணைப்புக்கள், மும்மைப் பிணைப்புக்கள்). இது நிரம்பாத் தன்மைக்குரிய பேயரின் பரிசோதனை எனப் பெயரிடப்பட்டுள்ளது. எனினும் இலகுவில் ஒட்சியேற்றமடையக்கூடிய பதார்த்தங்களான அல்டிகைட்டுக்கள் போன்றவை இப் பரிசோதனைக்கு விடையளிக்கும்.


2.2.3 அற்கைன்களின் தாக்கங்கள்

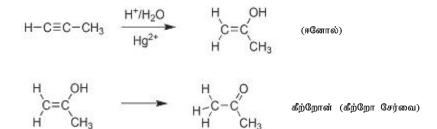
அற்கைன்கள் ஒரு ó - பிணைப்பையும் இரு π - பிணைப்புக்களையுமுடைய காபன் - காபன் மும்மைப் பிணைப்புக்களைக் கொண்டுள்ளன. அற்கீன்களுடன் தாக்கமடைந்த சோதனைப் பொருட்களுடன் அற்கைன்களும் இலத்திர நாட்ட கூட்டல் தாக்கத்தில் ஈடுபடுக்கூடியன. இரு π - பிணைப்புக்களும் ஒவ்வொன்றாகத் தனித்தனியாகத் தாக்கமடையக்கூடியன.

2.2.3.1 புரோமீனைச் சேர்த்தல்

2.2.3.2 ஐதரசன் ஏலைட்டுக்களைச் சேர்த்தல்



2.2.3.3 நீரைச் சேர்த்தல்


அற்கைன்கள் Hg²⁺, ஐதான H₂SO₄ முன்னிலையில் ஒரு மூலக்கூறு நீருடன் தாக்கமடைந்து ஈனோலைக் கொடுக்கும். காபன் - காபன் இரட்டைப் பிணைப்பிலுள்ள காபன் அணுவிற்கு இணைக்கப்பட்ட OH கூட்டத்தைக் கொண்டுள்ள மூலக்கூறு ஈனோல் என்று அறியப்படும்.

(ஈனோல்)

ஈனோல்கள் உறுதியற்றவை. அத்துடன் உடனடியாக மிக உறுதியான கீற்றோ அமைப்பிற்கு மறுசீராக்கப்படும் (அல்டிகைட்டுக்கள் அல்லது கீற்றோன்கள்).

அற்கைன்களிற்கும் நீரிற்குமான கூட்டல் தாக்கம் மார்க்கோனிக்கோ விதிக்கு அமைய நடைபெறுவதைப் புரொப்பைன் தாக்கத்தின் மூலம் கீழே காட்டப்பட்டுள்ளது.

2.2.3.4 ஊக்கி முன்னிலையில் ஐதரசனைச் சேர்த்தல் (ஐதரனேந்நம்)

அற்கைன்கள் ஐதரசனுடன் Pt அல்லது Pd அல்லது Ni போன்ற ஊக்கி முன்னிலையில் தாக்கமடைந்து அற்கேன்களைக் கொடுக்கும்.

இத்தாக்கத்தின்போது தாக்க நிபந்தனைகளின் கீழ் அற்கைன் முதலில் அற்கீனாகத் தாழ்த்தப்பட்டு இது மேலும் அற்கேனாகத் தாழ்த்தப்படும். தாக்குதிறன் குறைந்த ஊக்கியைப் பயன்படுத்தி அற்கீன் நிலையில் (stage) நிற்பாட்டலாம். கியூனலினால் (quinoline) (நச்சுப்படுத்தப்பட்ட) ஏவலகற்றப்பட்ட BaSO₄ இல் படியப்பட்ட Pd ஊக்கி அதிகமாக அடிக்கடி பயன்படுத்தப்படும்.

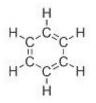
2.2.4 முடிவிடத்தில் ஐதரசனைக் கொண்டுள்ள அற்கைன்களின் அமிலத்தன்மை

மும்மைப் பிணைப்பு காபன் அணுக்கள் *sp* கலப்பிற்குட்பட்டதாகும். மும்மைப் பிணைப்புக் காபனில் ஈடுபட்டுள்ள C-H பிணைப்பானது காபன் அணுவின் *sp* கலப்பு ஓபிற்றலும் H இன் *s*-ஓபிற்றலும் நேர்கோட்டு மேற்பொருந்துகைக்குட்பட்டு உருவாக்கப்படும். *sp* கலப்பு ஓபிற்றலானது sp^2 அல்லது sp^3 கலப்பு ஓபிற்றல்களிலும் கூடியளவு *s* இயல்பைக் (50% *s* - இயல்பு) கொண்டுள்ள தால் அற்கைன்களிலுள்ள C-H பிணைப்பிலுள்ள பிணைப்பு இலத்திரன்கள் ($C \equiv C - H$) அற்கீன்கள் மற்றும் அற்கேனிலுள்ள C-H பிணைப்பிலுள்ள பிணைப்பு இலத்திரன்கள் ($D \equiv C - H$) வற்கீன்கள் மற்றும் அற்கேனிலுள்ள C-H பிணைப்பிலுள்ள பிணைப்பு இலத்திரன்களிலும் பார்க்கக் காபன் அணுவின் கருவிற்குக் கிட்டவாகக் காணப்படும். எனவே மும்மைப் பிணைப்புக் காபனிற்கு இணைக்கப்பட்ட H இன் அமில இயல்பானது அற்கீன்கள் மற்றும் அற்கேன்களிலுள்ள C-H பிணைப்பின் H இலும் கூடவாகும். எனினும் அற்கைன்களிற்கு இணைக்கப்பட்ட முடிவு நிலை H இன் அமில இயல்பு நீர் மற்றும் அற்ககோல்களிலும் குறைவாகும்.

அற்கைன்களிலுள்ள முடிவுநிலை H ஆனது H⁺ மாதிரி வன்மூலங்களான NaNH₂ மற்றும் தாக்கு திறனுடைய உலோகங்களான Na என்பவற்றுடன் தாக்கமடையக்கூடியது. விளைவாக வுள்ள அசற்றிலைட்டு அனயன் உறுதியானது. ஏனெனில் பிணைப்பிலீடுபடாத இரு இலத்திரன் களும் (எதிரேற்றமுடையது) காபன் கருவிற்கு (நேரேற்றம்) அருகிலுள்ளதாகும்.

$$H_{3}C-C\equiv C-H \xrightarrow{Na} H_{3}C-C\equiv \overline{C}Na^{+} + H_{2}$$
$$H_{3}C-C\equiv C-H \xrightarrow{NaNH_{2}} H_{3}C-C\equiv \overline{C}Na^{+} + NH_{3}$$

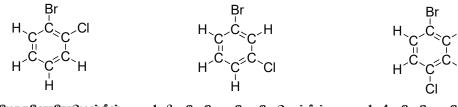
முடிவுநிலையில் H ஐக் கொண்டுள்ள அற்கைன்கள் (−*C* ≡ *C* − *H*) சில பாரமான உலோக அயன்களான Ag⁺ மற்றும் Cu⁺ உடன் தாக்கமடைந்து நீரில் கரையாத உலோக அற்றிலைட்டைக் கொடுக்கின்றன. இவ்விரு தாக்கங்களும் முடிவுநிலை H ஐக் கொண்டுள்ள அற்கைன்களை இனம் காணப் பயன்படுத்தப்படலாம்.


$$H_3C-C≡C-H \xrightarrow{NH_3/Cu_2Cl_2} H_3C-C≡C-Cu ↓$$

 $H_3C-C≡C-H \xrightarrow{NH_3/AgNO_3} H_3C-C≡C-Ag ↓$

2.3 பென்சீனின் பிணைப்பின் இயல்பு

பென்சீனின் மூலக்கூற்றுச் சூத்திரம் C₆H₆ ஆகும். எனவே இது ஒரு நிரம்பாத சேர்வை என்பதைக் குறிக்கும். சாதாரண நிபந்தனைகளின் கீழ் பென்சீன் நிரம்பாமைக்குரிய பரிசோதனைக்கு விடை யளிப்பதில்லை. எனவே அற்கீன் அல்லது அற்கைன் என்பனவற்றின் கட்டமைப்பிற்கு ஒத்த கட்டமைப்பைக் கொண்டிருக்காது.


2.3.1 பென்சீனின் கட்டமைப்பு

கெக்குலே பென்சீனிற்கு முன்மொழிந்த கட்டமைப்பானது ஒன்றுவிட்ட ஒன்று, மூன்று இரட்டைப் பிணைப்புக்களையும் மூன்று ஒற்றைப் பிணைப்புக்களையுமுடைய, காபன் அணுக்களின் ஆறு உறுப்பினர்களையுடைய வளையத்தைக் கொண்டுள்ளதாகும்.

உரு 2.13 1865 இல் கெக்குலேயினால் முன்மொழியப்பட்ட பென்சீனின் கட்டமைப்பு

இக் கட்டமைப்பானது அரோமற்றிக் சமபகுதியத்திற்குரிய சேர்வைகளின் தொடர்புகள் சம்பந்தமாகக் கிடைக்கக்கூடிய சான்றுகளை அடிப்படையாகக் கொண்டது. எந்தவொரு ஒரு பிரதியீட்டுப் பென்சீனிற்கும் (C_6H_5X , $X = -CH_3$, $-C_2H_5$, -OH, -Cl, -Br, -CHO போன்றன) சமபகுதியங்கள் காணப்படாதாகையால் பென்சீனிலுள்ள ஆறு காபன் அணுக்களும் ஒரே மாதிரியானவை (சமமானவை) என்பதைக் குறிக்கும். எனவே பென்சீனின் எந்தவொரு காபன் அணுவில் பிரதியீடும் எப்போதும் ஒரு தனிச் சேர்வையைக் கொடுக்கும். மூன்று சமபகுதிய இரு பிரதியீட்டுப் பென்சீன்கள் உள்ளதாகக் காணப்பட்டுள்ளது. கெக்குலே இக் கட்டமைப்புக்களை 1, 2-இரு பிரதியீடு, 1, 3- இரு பிரதியீடு, 1, 4- இரு பிரதியீடு எனப் பெயரிட்டார் (உரு 2.14). பின்பு இவை ஓதோ, மெற்றா மற்றும் பரா சமபகுதியங்கள் எனப் பெயரிடப்பட்டன.

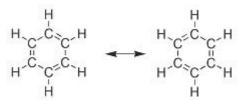
1, 2-புரோமோகுளோரோபென்சீன் (ஒதோ-புரோமோகுளோரோபென்சீன்)

1, 3-புரோமோகுளோரோபென்சீன் (மெற்றா-புரோமோகுளோரோபென்சீன்)

1, 4-புரோமோகுளோரோபென்சீன் (பரா-புரோமோகுளோரோபென்சீன்)

உரு 2.14 மூன்று சமபகுதிய இரு பிரதியீட்டுப் பென்சீன்கள்

எனினும் இக் கட்டமைப்புக்கள் குறிப்பாகக் காட்டுவது, பிரதியீட்டுக் காபன் ஒற்றைப் பிணைப்பு அல்லது இரட்டைப் பிணைப்பால் வேறுபடுத்தப்படுவதில் தங்கியுள்ளதற்கேற்ப இரு வேறுபட்ட ஒதோ - இரு பிரதியீட்டுப் பென்சீன்கள் சாத்தியமானவை. இதுவரை பென்சீனின் இரு வெவ்வேறான ஒதோ சமபகுதியங்கள் காணப்படாதாகையால், கெக்குலே பென்சீன் மூலக்கூறானது சமநிலையி லுள்ள இரு சமமான கட்டமைப்புக்களால் எடுத்துக் காட்டலாம் என முன்மொழிந்தார் (உரு 2.15). எனவே ஒற்றை மற்றும் இரட்டைப் பிணைப்புக்கள் தொடர்ந்து நிலைகளை தமக்குள்ளே மாற்றி அமைக்கின்றன.

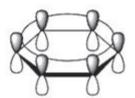


உரு 2.15 (ழன்மொழியப்பட்ட 1-புரோமோ -2-குளோரோ பென்சீனின் இரு கட்டமைப்புக்களுக்கிடையேயான விரைவான சமநிலை

இம் முன்மொழிவு பென்சீன் இரு சாத்தியமான கட்டமைப்புக்களைக் கொண்டுள்ளது என விளக்குகின்றது. மற்றும் இவை இரண்டும் அறைவெப்பநிலையில் இருக்கின்றன. ஆயினும், பென்சீனிற்கு இவ்விதமான இரு கட்டமைப்புக்கள் தொடர்ந்து இருப்பதற்கான பரிசோதனைச் சான்றுகள் கண்டுபிடிக்கப்படவில்லை.

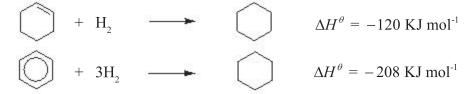
மேலும், பென்சீனில் அதாவது அடுத்தடுத்த இரு காபன் அணுக்களுக்கிடையிலான பிணைப்பு நீளம் சமமானவை. பென்சீனில் காபன் - காபன் பிணைப்பு நீளம் 1.39 × 10⁻¹⁰ m ஆகும். இது காபன் - காபன் இரட்டைப் பிணைப்பு நீளத்திற்கும் (1.34 × 10⁻¹⁰ m) காபன் - காபன் ஒற்றைப் பிணைப்பு நீளத்திற்கும் (1.54 × 10⁻¹⁰ m) இடைப்பட்டதாகும்.

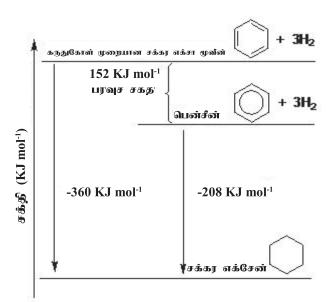
மேலும் உரு 8.16 இல் கொடுக்கப்பட்டுள்ளவாறு பென்சீனின் கட்டமைப்பானது இரு கட்டமைப்புக்களினதும் பரிவுக் கலப்பாகக் கருதப்பட்டது.


உரு 2.16 பென்சீனின் பரிவுக் கட்டமைப்புக்கள்

வசதிக்காக பென்சீனின் பரிவுக் கட்டமைப்புக்கள் கீழே காட்டப்பட்டுள்ளவாறு எழுதப்படும்.

பரிவுக் குறியீட்டிற்கும் (இருதலை அம்பு) சமநிலைக் குறியீட்டிற்குமிடையிலான வேறுபாட்டைக் குறிப்பு எடுக்கவும். சமநிலையில் கட்டமைப்புக்களால் காட்டப்படும் சேர்வைகள் உண்மையாக இருக்கின்றன. அதேசமயம் பரிவுக் கலப்பின் எண்ணக்கருவில் கட்டமைப்புக்களால் காட்டப்படும் எந்தவொரு சேர்வையும் உண்மையாக இருப்பதில்லை. உண்மையான மூலக்கூறை எடுத்துக் காட்டுவதற்கான எந்தவொரு முறையும் இல்லாதபடியால் அவை அவ்வாறு வரையப்படுகின்றன. ஒவ்வொரு பரிவுக் கட்டமைப்பும் சேர்வையின் உண்மையான கட்டமைப்பிற்குப் பங்களிப்புச் செய்கின்றது. அத்துடன் மிக உறுதியான கட்டமைப்பு உண்மையான கட்டமைப்பிற்குக் கூடியளவு பங்களிப்புச் செய்கின்றது. மேலும் பென்சீனின் இரு கட்டமைப்புக்களையும் எடுத்தால், அவை சம உறுதியை உடையன. அத்துடன் சம பங்களிப்பையும் செய்கின்றன.


பென்சீனிலுள்ள எல்லாக் காபன் அணுக்களும் *sp*² கலப்பிற்கு உட்பட்டதாகும். மற்றும் ஒவ்வொரு காபன் அணுவும் கலப்பிலீடுபடாத *p* - ஒபிற்றலைக் கொண்டுள்ளது. இவ் இரு பக்கத்திலுமுள்ள கலப்பிலீடுபடாத *p* - ஒபிற்றல்கள் மேற்பொருந்துகையில் ஈடுபடக்கூடியன (உரு 2.17). இதனால் சக்கர ஓரிடப்பாடற்ற இலத்திரன் முகிலானது எல்லா ஆறு காபன் அணுக்களுக்கும் பொதுவாக உருவாக்கப்படும். எனவே பென்சீனின் உண்மையான கட்டமைப்பானது கெக்குலேயின் இரு கட்டமைப்புக்களினதும் கலப்பாகும் எனக் கருதப்படும். ஓரிடப்பாடற்ற இலத்திரன்களை உடைய பென்சீனின் உண்மையான கட்டமைப்பானது, கெக்குலேயின் கருதுகோள் முறையிலான மூன்று இரட்டைப் பிணைப்புக்களையுடைய பென்சீனின் கட்டமைப்பிலும் உறுதியானது. ஓரிடப்பாடுள்ள பிணைப்புக்களைப் பயன்படுத்தி வரையப்பட்ட மரபுமுறையான கட்டமைப்புக்களைப் பயன்படுத்தி, ஓரிடப்பாடற்ற இலத்திரன்களை விபரமாக விளக்குவதற்குப் பரிவின் எண்ணக்கரு பயன்படுத்தப் பட்டது.


உரு 2.17 பென்சீனில் காபன் அணுக்களின் *p* - ஒபிற்றல்களின் பக்கவாட்டு மேற்பொருந்துகையினால் உருவாக்கப்படும் சக்கர ஓரிடப்பாடற்ற இலத்திரன் முகில்

2.3.2 பென்சீனின் உறுதித்தன்மை

பென்சீன் மூலக்மூறின் உறுதியை விளக்குவதற்கு நியம ஐதரசனேற்ற வெப்பவுள்ளுறைகளின் தரவுகள் உதவுகின்றன.

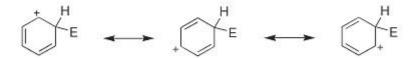
சக்கர எக்சீனின் நியம ஐதரசனேற்ற வெப்பவுள்ளுறை (ஒரு இரட்டைப் பிணைப்புடைய ஆறு உறுப்பினர்களையுடைய சக்கர ஐதரோகாபன்) (ΔH^{θ}) – 120 KJ mol⁻¹ ஆனபடியால், அற்கீன்கள் மாதிரி மூன்று இரட்டைப் பிணைப்புக்களை பென்சீன் கொண்டிருந்தால் நியம ஐதரசனேற்ற வெப்பவுள்ளுறை (ΔH^{θ}) – 3×120 KJ mol⁻¹ ஆக இருக்க வேண்டும். ஆனால் பென்சீனின் நியம ஐதரச னேற்ற வெப்பவுள்ளுறை (ΔH^{θ}) – 208 KJ mol⁻¹ ஆகக் காணப்பட்டது. இது எதிர்பார்க்கப்பட்ட மூன்று இரட்டைப் பிணைப்புக்களின் ஐதரசனேற்றத்திலும் –152 KJ mol⁻¹ குறைவாகக் காணப்பட்டது (உரு 2.18). எனவே பென்சீனானது கெக்குலே கட்டமைப்பிலும் (360 - 208) = 152 KJ mol⁻¹ இற்குச் சமமான பெறுமானத்தால் உறுதியாக்கப்படுகின்றது. மேலும் சக்கர ஓரிடப்பாடற்ற ஆறு பை இலத்திரன்கள் இவ்வுறுதிக்குக் காரணமாகும். மற்றும் இது பென்சீனின் பரிவால் உறுதியாக்கப்படும் சக்தி (அரோமற்றிக் உறுதியாக்கம்) எனக் குறிப்பிடப்படு கின்றது.

உரு 2.18 பென்சீனினதும் கருதுகோள் முறையான சக்கர எக்சா மூவினதும் நியம ஐதரனேற்ற வெப்பவுள்ளுறைகள்

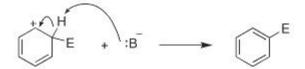
2.4 பென்சீனின் உறுதியை உதாரணங்கள் மூலம் விளக்குவதற்கான சிறப்பியல்பான தாக்கங்கள்

பென்சீன் மூலக்கூறின் தளத்திற்கு இரு பக்கங்களிலும் (மேலும் கீழும்) தளர்வாகப் பிணைக்கப்பட்ட ஓரிடப்பாடற்ற இலத்திரன் முகிலைப் பென்சீன் கொண்டுள்ளது. இது பென்சீன் வளையத்தின் இலத்திரன் செறிவைக் கூட்டுவதால், அற்கீன்கள் மாதிரி இலத்திரனாடிகளிற்குத் தாக்குதன்மை உடையதாகும். இவ் ஓரிடப்பாடற்ற இலத்திரன்களால், பென்சீன் மேலதிக உறுதியைக் காட்டுவ தாகக் கலந்துரையாடி உள்ளோம். ஆகவே பென்சீனின் சக்கர ஓரிடப்பாடற்ற இலத்திரன் முகிலை உள்ளடக்கக்கூடிய தாக்கங்களில் பென்சீன் இலகுவாக ஈடுபடாது. எனவே பென்சீனின் சிறப்பியல்பான தாக்கங்கள் இலத்திரனாட்டப் பிரதியீட்டுத் தாக்கங்களாகும். மற்றும் அற்கீன்கள் மாதிரி இலத்திரனாட்டக் கூட்டல் தாக்கங்களில் ஈடுபடாது.

2.4.1 பென்சீனின் இலத்திரனாட்டப் பிரதியீட்டுத் தாக்கங்கள்


பென்சீனின் இலத்திரனாட்டப் பிரதியீட்டுத் தாக்கங்களில் பென்சீன் வளையத்திற்கு இணைக்கப்பட்ட ஐதரசன் அணுக்கள் இலத்திரனாடிகளால் (E⁺) பிரதியீடு செய்யப்படும்.

இத்தாக்கத்தின் முதற்படியானது பென்சீன் வளையத்திலுள்ள காபன் அணுவிற்கும் இலத்திர னாடிக்கும் (E⁺) இடையே பிணைப்பை உருவாக்குவதன் மூலம் காபோகற்றயனைக் (ஏரீனியம் அயன் - arenium ion) கொடுப்பதாகும். இப்படியானது அற்கீனிற்கும் HBr இற்குமிடையிலான இலத்திரனாட்டக் கூட்டல் தாக்கத்தின் முதற்படியை மிகவும் ஒத்ததாகும்.

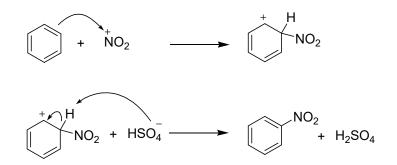


இவ்வாறு உருவாக்கப்படும் இடைநிலைக் காபோகற்றயன், நேரேற்றம் இரு பை பிணைப்புகளுடன் இணைந்து ஓரிடப்பாடற்றதாக்கப்படுவதால் உறுதியாக்கப்படுகின்றது. இது பின்வருமாறு பரிவினால் காட்டப்படுகின்றது.

ஆயினும் பென்சீனிலிருந்து மேலே உள்ள காபோகற்றயன்களிற்குப் போகும்போது சக்கர ஓரிடப்பாடற்ற பை இலத்திரன்கள் உடைகின்றன. அத்துடன் அரோமற்றிக் உறுதியாக்கற் சக்தியும் இழக்கப்படுகின்றது. இடைநிலைக் காபோகற்றயன் அற்கீன்கள் மாதிரி கருநாடிகளுடன் தாக்க மடைந்து கூட்டல் விளைவுகளைக் கொடுப்பதிலும் பார்க்கப் புரோத்திரனை இழந்து சக்கர ஓரிடப்பாடற்ற இலத்திரன் முகிலை மீண்டும் நிலைநிறுத்துவதற்குச் சக்தி ரீதியில் சாதகமாக உள்ளது.

புரோத்திரன் சாதாரணமாகத் தாக்கக் கலவையிலுள்ள ஏதாவதொரு காரத்தினால் (B;) எடுக்கப் படும். இவ்வாறாக முடிவானது, பென்சீன் வளையத்திலுள்ள H அணு E இனால் பிரதியிடப்படும்.

2.4.1.1 நைத்தீரேற்றம்


பென்சீன் செறிந்த HNO₃ / செறிந்த H₂SO₄ கலவையுடன் தாக்கமடைந்து நைத்திரோ பென்சீனைக் கொடுக்கும். இது H அணு நைத்திரோ கூட்டத்தினால் பிரதியிடப்படுவதனால் உருவாகும்.

இத் தாக்கத்தில் இலத்திரனாடி ⁺NO₂. இது தாக்கக் கலவையில் சல்பூரிக் அமிலத்தினால் நைத்திரிக் அமிலத்திலிருந்து நீரகற்றப்படும்போது உருவாக்கப்படும்.

$$H_2SO_4 + HONO_2 \longrightarrow HSO_4^- + H - O_-^+ NO_2 \longrightarrow H_2O + NO_2$$

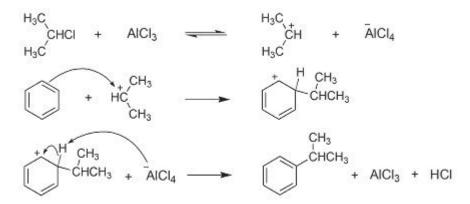
⁺NO₂ பென்சீனுடன் தாக்கமடையும். இறுதிப் படியில் மூலமாகத் தொழிற்படும் ஐதரசன்சல்பேற் அயனினால் (இருசல்பேற் அயன்) புரோத்திரன் அகற்றப்படுகின்றது.

2.4.1.2 பிரீடல் - கிராவ் இன் அற்கைலேற்றம்

பென்சீன் அற்கைல் ஏலைட்டுடன் நீரற்ற AlCl₃ போன்ற லூயி அமில முன்னிலையில் தாக்க மடைந்து அற்கைல் பென்சீனைக் கொடுக்கும். இதில் பென்சீனிற்கு இணைக்கப்பட்ட H அணு அற்கைல் கூட்டத்தினால் பிரதியிடப்படும்.

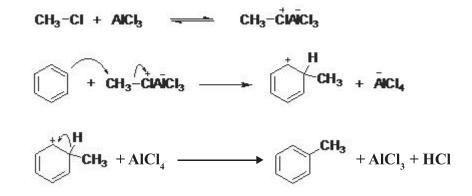
முதல், வழி மற்றும் புடை அற்கைல் ஏலைட்டுக்கள் (பகுதி 8.6 ஐப் பார்க்கவும்.) போன்றவற்றில் தாக்கத்தின் இலத்திரனாடி R⁺ ஆகும். இது அற்கைல் ஏலைட்டிற்கும் லூயி அமிலத்திற்கு மிடையிலான தாக்கத்தில் முதற் படியாக உருவாக்கப்படும்.

 $RCI + AICI_3 \longrightarrow R^+ + AICI_4$


இறுதிப்படியில் புரோத்திரன் AlCl₄ இனால் அகற்றப்படும்.

 $AICI_{4}^{-} + H^{+} \longrightarrow AICI_{3} + HCI$

உதாரணத்தைப் பார்க்கவும்.


இத்தாக்கத்தின் பொறிமுறை பின்வருமாறு.

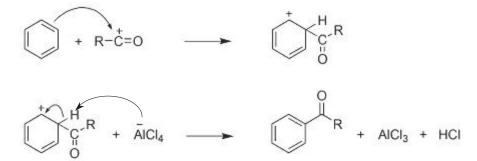
அற்கைல், ஏலைட்டிலிருந்து காபோகற்றயன் உருவாக்கப்படுவதை இத்தாக்கத்தின் முதல்படியாக நாம் பார்க்கலாம். இரண்டாவது படியில் பென்சீனும் காபோகற்றயனும் ஒன்றுடன் ஒன்று தாக்கி தாக்கமடைந்து ஏரீனியம் அயனை (arenium ion) உருவாக்குவதாகும். இறுதிப் படியில் புரோத்திரன் அகற்றப்பட்டு அவ்விளைவின் அரோமற்றிக் உறுதி திரும்பப் பெறப்படும்.

முதல் அற்கைல் ஏலைட்டு RX ஐ எடுத்தால் (உ+ம்: CH₃Cl), பென்சீன் மூலக்கூறுடன் தாக்க மடைவது R⁺ துணிக்கையாக இருக்க முடியாது. ஆனால் RCl மூலக்கூறு AlCl₃ உடன் ஈதற் பிணைப்பை ஏற்படுத்துவதால் முனைவாக்கமடையும். இதனால் தாக்கத்தின்போது RCl பிணைப்பு பிளவடைவதால் R⁺ பென்சீன் மூலக்கூறிற்கு மாற்றப்படும்.

சாத்தியமான பொறிமுறை பின்வருமாறு:

ஒரு பிரதியீட்டு பென்சீனில், பிரதியீட்டுத் தொகுதி அலசனிலும் பார்க்க வன்மையாக இலத்திரனைக் கவரும் தன்மை (ஏவலகற்றும் தன்மை) உடையதாயின் பிரீடல் - கிராவ் அற்கைலேற்றம் நடைபெறாது (உ+ம்: நைத்திரோ பென்சீன்.)

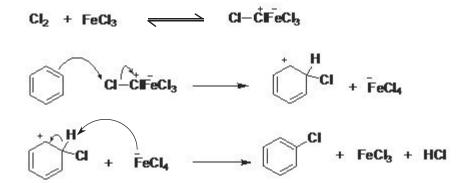
2.4.1.3 பிரீடல் - கிராவ் இன் ஏசைலேற்றம்


பென்சீன் அமிலகுளோரைட்டுக்களுடன் நீரற்ற AlCl₃ போன்ற லூயி அமிலம் முன்னிலையில் தாக்கமடைந்து ஏசைல் பென்சீனைக் கொடுக்கும். இதில் H அணு ஏசைல் கூட்டத்தினால் பிரதியிடப்படும்.

இத்தாக்கத்தில் ஏசைலியம் அயன் (RCO⁺) இலத்திரனாடியாகும். இது பின்வருமாறு தாக்கத்தின் முதற்படியில் AlCl₂ உம் ஏசைல் குளோரைட்டும் தாக்கமடைந்து உருவாகும். இது பின்வருமாறு:

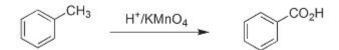
$$R^{\circ}$$
 + AICI₃ + R° + R°

இரண்டாவது படியில் ஏசைலியம் அயன் பென்சீனுடன் தாக்கமடைந்து ஏரீனியம் (arenium) அயனைக் கொடுக்கும். இறுதிப்படியில் புரோத்திரன் அகற்றப்பட்டு அரோமற்றிக் உறுதி திரும்பப் பெறப்படும்.



2.4.1.4 அலசனேற்றம்

பென்சீன் Cl₂ அல்லது Br₂ உடன் FeCl₃ , FeBr₃ அல்லது AlCl₃ அல்லது AlBr₃ போன்ற லூயி அமிலம் முன்னிலையில் நீரற்ற நிபந்தனைகளின் கீழ் தாக்கமடைந்து குளோரோ பென்சீனை அல்லது புரோமோ பென்சீனைக் கொடுக்கும். பென்சீன் வளையத்தில் H அணு அலசன் அணுவால் பிரதியீடு செய்யப்படும்.



மேலுள்ள தாக்கத்தில் ஆற்றல்வாய்ந்த இலத்திரனாடி Cl^+ ஆகும். இது தாக்கத்தின்போது சிக்கலிலிருந்து பென்சீன் வளையத்திற்கு மாற்றப்படும். இறுதிப்படியில் புரோத்திரன் அகற்றப்பட்டு அரோமற்றிக் உறுதி திரும்பப் பெறப்படும்.

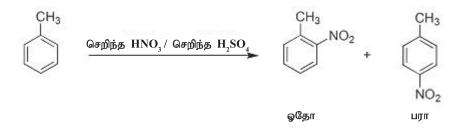
2.4.2 பென்சீன் வளையத்தின் ஒட்சியேற்றத்திற்கான தடை

பென்சீனின் உறுதியால் சாதாரண ஒட்சியேற்றும் கருவிகள் போன்ற H⁺ / KMnO₄ இனால் ஒட்சியேற்றத்திற்குட்படாது. ஆயினும் அற்கைல் தொகுதியில் பிரதியீடு செய்யப்பட்ட பென்சீனிலுள்ள அற்கைல் தொகுதி H⁺ / KMnO₄ இனால் காபொட்சிலிக் அமிலத் தொகுதியாக ஒட்சியேற்ற மடையும். இவ் ஒட்சியேற்றத்திற்கு H⁺ / K₂Cr₂O₇ ஐயும் பயன்படுத்தலாம்.

முதல் மற்றும் வழி அற்கைல் கூட்டங்கள் ஒட்சியேற்றமடையும் நிபந்தனைகளின் கீழ் புடை அற்கைல் தொகுதிகள் ஒட்சியேற்றமடையாது. மிக வலிமையான நிபந்தனைகளின் கீழ் புடை அற்கைல் தொகுதி ஒட்சியேற்றமடையலாம். அத்துடன் இதன் விளைவாகப் பென்சீன் வளையமும் பிளவடையும்.

2.4.3 பென்சீன் வளையத்தின் ஐதரசனேந்நத்திந்கான தடை

அற்கீன்கள் மாதிரி பென்சீன் இலத்திரனாட்டற் கூட்டற்றாக்கத்திற்கு இலகுவாக ஈடுபடாவிடினும், அற்கீன்களுடன் ஒப்பிடுகையில் இது ஐதரசனுடன் தகுந்த ஊக்கி முன்னிலையில் உயர் வெப்ப நிலைகளில் கூட்டத் தாக்கதிலீடுபடும்.


2.5 ஒரு பிரதியீட்டுப் பென்சீனிலுள்ள பிரதியீட்டுத் தொகுதிகளின் திசைப்படுத்தும் இயல்பு

ஒரு பிரதியீட்டுப் பென்சீன் இலத்திரனாட்டப் பிரதியீட்டுத் தாக்கத்திலீடுபடும்போது, முதலாவது பிரதியீட்டுத் தொகுதியின் இயல்பில் இரண்டாவது பிரதியீட்டுத் தொகுதி சேர்க்கப்படும் இடம் தீர்மானிக்கப்படும். பிரதியீட்டுத் தொகுதிகளை இரண்டு அடிப்படை வகைகளாகப் பிரிக்கலாம்.

2.5.1 ஓதோ, பரா திசைப்படுத்தும் தொகுதிகள்

உ+ம்: -OH, -R, -NH₂, -NHR, -OCH₃ அலசன்கள்.

அலசன்கள் தவிர்ந்த ஏனைய ஓதோ, பரா திசைப்படுத்தும் தொகுதிகள் பென்சீன் வளையத்தில் இலத்திரன் செறிவைப் பென்சீனிலும் பார்க்க அதிகரிக்கச் செய்வதால், இலத்திரனாட்டப் பிரதியீட்டுத் தாக்கங்களிற்கு பென்சீன் வளையத்தை ஏவும்.

2.5.2 மெற்றா திசைப்படுத்தும் தொகுதிகள்

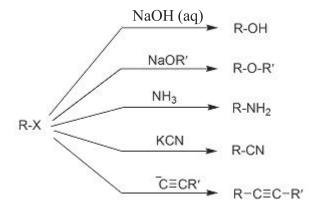
netwise -NO², -CHO, -COR, -COOH, -COOR

மெற்றா திசைப்படுத்தும் தொகுதிகள் பென்சீன் வளையத்தில் இலத்திரன் செறிவைக் குறைப்பதன் மூலம் இலத்திரனாட்டப் பிரதியீட்டுத் தாக்கங்களிற்கு பென்சீன் வளையத்தை ஏவலகற்றும்.

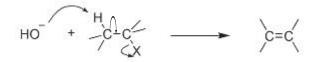
2.6 அற்கைல் ஏலைட்டுக்களின் கட்டமைப்புக்களும் தாக்கங்களும்

அலசன் அணுவைக் கொண்டுள்ள காபன் அணுவிற்கு இணைக்கப்பட்டுள்ள H அணுக்களின் எண்ணிக்கைக்கு ஏற்ப அற்கைல் ஏலைட்டுக்கள் முதல், வழி மற்றும் புடை என வகைப்படுத்தப் பட்டுள்ளன.

அற்கைல் ஏலைட்டுக்கள் முனைவாக்கமுள்ள சேர்வைகளாகும். இவை முனைவுத்தன்மை உடையனவாக இருப்பினும், இவற்றின் (அற்கைல் ஏலைட்டுக்களின்) நீர்க்கரைதிறன் மிகவும் குறைவானதாகும். இவை நீருடன் ஐதரசன் பிணைப்பை ஏற்படுத்தாமை இதற்கான ஒரு காரணமாகும்.


காபன் அணு சார்பாக அலசன் அணு உயர் மின்னெதிர்த் தன்மை உடையதால், காபன் அலசன் பிணைப்பு முனைவாக்கமடைகின்றது. இதன் விளைவாக அக்காபன் அணுவில் இலத்திரன் பற்றாக்குறை ஏற்படுகின்றது. எனவே இந்நிலையில் கருநாடி தாக்குவது சாத்தியமானதாகும். கருநாடிகள் மூலங்கள், இலத்திரன் செறிவு கூடியனவாகும். இவை ஒரு சோடி இலத்திரன்களைப் பயன்படுத்துவதன் மூலம் இலத்திரன் பற்றாக்குறை காபன் அணுவுடன் பிணைப்பை ஏற்படுத்துவன.

ஒரு சில சாதாரண உதாரணங்கள்: OH, OR, NH_2 , $CN, RC \equiv C^2, H_2O, NH_3$


அற்கைல் ஏலைட்டுக்களின் சிறப்பியல்பான தாக்கங்களாவன கருநாட்டப் பிரதியீட்டுத் தாக்கங் களாகும். கருநாட்டப் பிரதியீட்டுத் தாக்கங்களின்போது, காபன் அணுவானது கருநாடியுடன் புதிய பிணைப்பை ஏற்படுத்தும். அலசன் அணுவானது ஏலைட்டு அயனாக வெளியேறும்.

$$Nu: + R - X \longrightarrow Nu - R + X$$

வேறு சில உதாரணங்கள்:

கருநாடி ஒரு சோடி இலத்திரன்களைக் கொண்டிருப்பதால், H⁺ உடன் பிணைப்பை ஏற்படுத்துவதன் மூலம் எக்கருநாடியும் மூலமாகத் தொழிற்படக்கூடியது. எனவே அற்கைல் ஏலைட்டு OH⁻, OR⁻ போன்ற சோதனைப் பொருட்களுடன் தாக்கமடையும்போது நீக்கல் தாக்கத்தில் ஈடுபடக்கூடியன என்பதைக் கீழே உள்ள தாக்கப் பொறிமுறையால் காட்டலாம்.

இத்தாக்கத்தில் OH⁻ தொகுதி, காபன் அணுவுடன் கருநாடியாகத் தொழிற்படுவதற்குப் பதிலாக, மூலமாகத் தொழிற்பட்டு அலசனைக் கொண்டுள்ள காபன் அணுவிற்கு அடுத்த காபன் அணுவிலுள்ள ஐதரசனை அகற்றுகின்றது. அலசனைக் கொண்டுள்ள காபன் அணுவிற்கு அடுத்த காபன் அணுவிற்கு இணைக்கப்பட்ட ஐதரசனானது, C - X பிணைப்பின் முனைவுத் தன்மையினால் குறைந்த அமிலத்தன்மை உடையது. இதனால் அற்கைல் ஏலைட்டுக்களில் பிரதியீட்டுத் தாக்கங்களும் நீக்கல் தாக்கங்களும் ஒன்றுடன் ஒன்று போட்டியிடும் தாக்கங்களாகும். பிரதியீட்டுத் தாக்கத்திற்கும் நீக்கல் தாக்கத்திற்கும் இடையேயான சமநிலையானது தாக்கத்திற்குப் பயன்படுத்தப்படும் கரைப்பானினால் செல்வாக்கு செலுத்தப்படுகின்றது. ஆய்வுசாலையில் பிரதியீடு தேவைப்படின் KOH நீர்க்கரைசல் பயன்படுத்தப்படும். நீக்கல் தாக்கம் தேவைப்படின் எதனோல் சேர் KOH பயன்படுத்தப்படும்.

அற்கைல் ஏலைட்டுக்கள் உலர் ஈதர் ஊடகத்தில் Mg உடன் தாக்கமடைந்து கிரினாட்டின் சோதனைப் பொருட்களை உண்டாக்கும். கிரினாட்டின் சோதனைப் பொருட்கள் சேதன உலோக சோதனைப் பொருட்களாகும் (organometallic reagents.)

அற்கைல் ஏலைட்டு கிரினாட்டின் சோதனைப்பொருளை உருவாக்கும்போது, ஆரம்பத்தில் அலசனிற்கு இணைக்கப்பட்ட காபன் அணுவின் முனைவுத்தன்மை கீழே காட்டப்பட்டள்ளவாறு மாற்றமடையும்.

$$\begin{array}{c} \overset{\delta +}{\underset{C-X}{\overset{\delta -}{\longrightarrow}}} \overset{\Delta -}{\underset{\mathfrak{s}_{-\infty j}}{\overset{Mg}{\underset{\mathfrak{r}_{\mathfrak{s}j}}{\xrightarrow{\longrightarrow}}}}} & \overset{\delta -}{\underset{C-MgX}{\overset{\delta +}{\xrightarrow{\longrightarrow}}}} \end{array}$$

இதனால் இலத்திரன் பற்றாக்குறையுடைய காபன் அணு இலத்திரன் செறிவுடைய காபன் அணுவாக மாற்றப்படும். Mg அணுவிற்கு இணைக்கப்பட்ட அற்கைல் கூட்டமானது, C - Mg பிணைப்பிலுள்ள ஒரு சோடி இலத்திரன்களைப் பயன்படுத்தி வன்மூலமாகவும் அத்துடன் வன்கருநாடி யாகவும் தொழிற்படக்கூடியது. எனவே மென்னமிலத் தன்மையுடைய H அணுக்களையுடைய சேர்வைகளின் முன்னிலையில் அல்லது நீரின் முன்னிலையில் கிரினாட்டின் சோதனைப் பொருட்களைத் தயாரிக்கவோ, பயன்படுத்தவோ முடியாது.

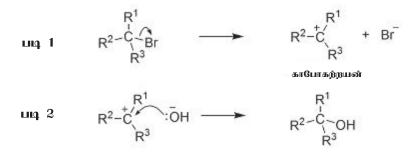
$$R-MgX + H_2O \longrightarrow RH + Mg < X$$

கிரினாட்டின் சோதனைப்பொருளின் வன்மூல இயல்பானது பின்வரும் தாக்கங்களின் மூலம் காட்டப்பட்டுள்ளது.

RMgX +	CH ₃ CO ₂ H		RH +	СН₃СОМ9Х
RMgX +	CH3OH	►	RH +	CH ₃ OMgX
RMgX +	C ₆ H ₅ OH	>	RH +	C ₆ H ₅ OMgX
RMgX +	NH ₃		RH +	H ₂ NMgX
RMgX +	CH ₃ NH ₂	>	RH +	CH ₃ NHMgX
RMgX +	СН₃С≡С−Н		RH +	$CH_3C\equiv CMgX$

மேலே உள்ள பட்டியலில் கடைசித் தாக்கமானது கிரினாட்டின் சோதனைப் பொருளிற்கும் முனையத்தையுடைய அற்கைனிற்குமான (Terminal alkyne, -C ≡ C-H) தாக்கமாகும். உண்டாக்கப் பட்ட விளைவும் இன்னுமொரு கிரினாட்டின் சோதனைப் பொருள் என்பதைக் குறிப்பிடவும். இத் தாக்கத்தை அசற்றலினிக் (acetylenic) கிரினாட்டின் சோதனைப் பொருட்கள் தயாரிக்கப் பயன்படுத்தலாம்.

2.7 பீணைப்பு உண்டாதல், பீணைப்பு உடைதல் படிகளின் நேரத்தின் அடிப்படையில் அற்கைல் ஏலைட்டுக்களின் கருநாட்டப் பீரதியீட்டுத் தாக்கங்கள்


தாக்கங்களின்போது பிணைப்புக்கள் உடைக்கப்பட்டு புதிய பிணைப்புக்கள் உருவாக்கப்படும். அற்கைல் ஏலைட்டுக்களின் கருநாட்டப் பிரதியீட்டுத் தாக்கங்கள் காபன் - அலசன் பிணைப்பு உடைக்கப்படுவதையும் மற்றும் காபன் - கருநாடிப் பிணைப்பு உண்டாக்கப்படுவதையும் உள்ளடக்கியதாகும். அற்கைல் ஏலைட்டுக்களின் கருநாட்டப் பிரதியீட்டுத் தாக்கங்களின் பொறிமுறைகளின் கற்றலில், பிணைப்பு உடைதல் மற்றும் பிணைப்பு உண்டாதல் படிகளிற் கிடையிலான நேர இடைவேளையாகக் கருதப்படுகிறது.

C - X பிணைப்பு உடைதலும் கருநாடியுடன் புதிய பிணைப்பு உருவாதலும் ஒரே நேரத்தில் நடைபெற்றால், அற்கைல் ஏலைட்டுக்களின் கருநாட்டப் பிரதியீட்டுத் தாக்கங்கள் ஒரு படித் தாக்கமாக நடைபெறும். அதன்படி அற்கைல் புரோமைட்டிற்கும் ஐதரொட்சைல் அயனிற்குமான தாக்கத்தில், ஒருபடித் தாக்கமானது பின்வருமாறு கொடுக்கப்படும்.

HO:
$$R^2 - C - Br$$

 R^3 $R^2 - C - OH$ R^3 R^3 R^3 R^3 R^3

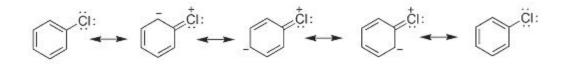
C - X பிணைப்பு உடைதல் முதலில் நடைபெற்றுப் பின்பு காபன் - கருநாடி புதிய பிணைப்பு உருவாகினால், அற்கைல் ஏலைட்டின் கருநாட்டப் பிரதியீட்டுத் தாக்கங்கள் இரு படிகளில் நடைபெறும்.

அதன்படி இரு படிகளில் நடைபெறும் தாக்கம் பின்வருமாறு கொடுக்கப்படுகின்றது.

இரு படிகளில் நடைபெறும் தாக்கமானது காபோகற்றயன் இடைநிலை ஊடாக நடைபெறுகின்றது. உருவாக்கப்படும் காபோகற்றயனின் உறுதியைக் கருதினால், புடை அற்கைல் ஏலைட்டுக்கள் (R₁, R₂, R₃- அற்கைல்) மிக உறுதியான காபோகற்றயனை உருவாக்க முடியுமாதலால் கருநாட்டப்

க.பொ.த. (உ/த) இரசாயனம்: அலகு 8 ஜதரோகாபன்களும் அலசன்சேர் ஐதரோகாபன்களும்

பிரதியீட்டுத் தாக்கங்கள் இரு படிகளில் முன்னெடுத்து செல்கின்றது. முதல் அற்கைல் ஏலைட்டுக்களின் (R¹, R² = H, R³ = H அல்லது அற்கைல்) கருநாட்டப் பிரதியீட்டுத் தாக்கங்கள் ஒரு படியினூடாக முன்னெடுத்துச் செல்லப்படும். ஏனெனில் அவற்றினால் உருவாக்கப்படும் முதல் காபோகற்றயன் உறுதி குறைந்ததாலாகும். பொதுவாக இருவிதமான தாக்கப் பாதை களையும் வழி அற்கைல் ஏலைட்டுக்களினால் ஒரு அளவிற்கு நடைபெறச் செய்ய முடியும். ஆனால் இது தாக்க நிபந்தனைகளில் தங்கியுள்ளது.


வைனைல் மற்றும் பீனைல் காபோகற்றயன்கள் உறுதியற்றன. எனவே வைனைல் ஏலைட்டுக்களும், ஏரைல் ஏலைட்டுக்களும் இருபடித் தாக்கப் பாதைகளினூடாகத் தாக்கமடையாதன. மேலும் அவை ஒருபடித் தாக்கப் பாதையினூடாகவும் தாக்கமடையாதன. ஏனெனில் C - X பிணைப்பின் இரட்டைப் பிணைப்புத் தன்மையினால் அற்கைல் ஏலைட்டுக்களிலும் வன்மையானது ஆகும்.

இதனைப் பின்வரும் பிரிவில் காட்டலாம்.

வைனைல் குளோரைட்டின் பரிவுக் கட்டமைப்பு

குளோரோபென்சீனின் பரிவுக் கட்டமைப்புக்கள்

62

உள்ளடக்கம்

3.1 அற்ககோல்களின் கட்டமைப்புக்களும் இயல்புகளும் தாக்கங்களும்

- ஓர் ஐதரிக் அற்ககோல்களைப் 3.1.1
 - பாகுபடுத்துதல்
- 3.1.2 பௌதீக இயல்புகள்
- அற்ககோல்களின் தாக்கங்கள் 3.1.3
 - 3.1.3.1 O H பிணைப்பு பிளவடைதலுடன் ஈடுபடும் தாக்கங்கள்
 - 3.1.3.2 C-O பிணைப்புப் பிளவடைதலுடன் ஈடுபடும் கருநாட்டப் பிரதியீட்டுத் தாக்கங்கள்
 - 3.1.3.3 நீக்கல் தாக்கம்
 - 3.1.3.4 அற்ககோல்களின் ஒட்சியேற்றம்

தாக்கங்களும்

- 3.2.1 பீனோல்களின் அமிலத்தன்மை
- O H பிணைப்புப் பிளவு அடைதலுடன் 3.2.2 ஈடுபடும் தாக்கங்கள்
- 3.2.3 C-O பிணைப்பு உடைதலினால் நிகழ முடியாத கருநாட்டப் பிரதியீட்டுத் தாக்கங்கள்

3.3 பீனோல்களிலுள்ள பென்சீன் வளையத்தின் தாக்குதன்மை

- ்புரோமீனுடன் பீனோலின் தாக்கம் 3.3.1
- பீனோலின் நைத்திரேற்றம் 3.3.2

3.4 அல்டிகைட்டுக்கள், கீற்றோன்கள் என்பனவற்றின்

- கட்டமைப்புக்கள், இயல்புகள் மற்றும் தாக்கங்கள் 3.4.1 பௌதீக இயல்புகள்
- 3.4.2 அல்டிகைட்டுக்களினதும் கீற்றோன்களினதும் தாக்கங்கள்.
- 3.4.3 கருநாட்டக் கூட்டல் தாக்கங்கள்
 - 3.4.3.1 அல்டிகைட்டுக்கள், கீற்றோன்கள் என்பனவற்றினுள் HCN ஐச் சேர்த்தல்.
 - கிரினாட்டின் சோதனைப் பொருட் 3.4.3.2 களுடன் தாக்கங்கள்.
 - 2, 4- இருநைத்திரோ பீனைல் 3.4.3.3 ஐதரசீனுடன் தாக்கம் (2, 4- DNP தாக்கம் அல்லது பிரடியின் (Brady) சோதனைப் பொருள்)
- 3.4.4 அல்டிகைட்டுக்களினதும் கீற்றோன்களினதும் நன்ஒடுக்கல் தாக்கங்கள்
- 3.4.5 இலித்தியம் அலுமீனியம் ஐதரைட்டு (LiAlH₄) அல்லது சோடியம் போரோ ஐதரைட்டு (NaBH₄) என்பவற்றினால் அல்டிகைட்டுக்களினதும் கீற்றோன்களினதும் தாழ்த்தல்.

- 3.4.6 Zn(Hg)/செறிHCl இனால் அல்டிகைட்டுக்கள் மற்றும் கீற்றோன்கள் Zn(Hg) / செறி HCl இனால் தாழ்த்தல் (கிமைன்சனின் தாழ்த்தல்)
- அல்டிகைட்டுக்களின் ஒட்சியேற்றம் 3.4.7
 - 3.4.7.1 தொலனின் (Tollen) சோதனைப் பொருளினால் ஒட்சியேற்றம்
 - 3.4.7.2 பீலிங்கின் (Fehling) கரைசலால் ஒட்சியேற்றம்
 - 3.4.7.3 அமிலமாக்கப்பட்ட பொற்றாசியம் இரு குரோமேற்று அல்லது அமிலமாக்கப்பட்ட பொற்றாசியம் பரமங்கனேற்று என்பனவற் றால் ஒட்சியேற்றம்.

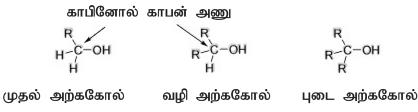
3.2 பீனோல்களின் கட்டமைப்புக்களும் இயல்புகளும் <mark>3.5 காபொட்சிலிக் அமிலங்களின் கட்டமைப்புக்கள்,</mark> இயல்புகள் மற்றும் தாக்கங்கள்

- 3.5.1 பௌதீக இயல்புகள்
- -COOH கூட்டத்தின் தாக்குதிறன் வகைகளை/ 3.5.2 மாதிரிகளை அல்டிகைட்டுக்கள், கீற்றோன்கள் என்பனவற்றின் >C=O கூட்டத்துடனும் மற்றும் அற்ககோல்கள், பீனோல்கள் என்பனவற்றின் -OH கூட்டத்துடனும் ஒப்பிடுதல்.
 - 3.5.2.1 O-H பிணைப்பு பிளவுபடுதலுடன் ஈடுபடும் தாக்கங்கள்
 - 3.5.2.2 C-O பிணைப்பு பிளவுபடுதலுடன் ஈடுபடும் தாக்கங்கள்
 - 3.5.2.3 LiAlH₄ உடன் காபொட்சிலிக் அமிலங் களின் தாழ்த்தல்.

3.6 காபொட்சிலிக் அமிலப் பெறுதிகளின் தாக்கங்கள்

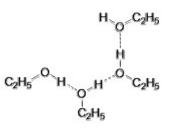
- அமில குளோரைட்டுக்களின் தாக்கங்கள் 3.6.1
 - 3.6.1.1 சோடியம் ஐதரொட்சைட்டு நீர்க்கரைச லுடன் தாக்கம்
 - 3.6.1.2 நீருடன் தாக்கம்
 - 3.6.1.3 அற்ககோல்கள், பீனோல்கள் என்பனவற் றுடன் தாக்கம்
 - 3.6.1.4 அமோனியா மற்றும் முதல் அமைன்கள் என்பவற்றுடன் தாக்கம்
- 3.6.2 எசுத்தர்களின் தாக்கங்கள்
 - 3.6.2.1 ஐதான கனிப்பொருள் அமிலங்களுடன் தாக்கங்கள்
 - 3.6.2.2 சோடியம் ஐதரொட்சைட்டு நீர்க்கரைச லுடன் தாக்கம்
 - 3.6.2.3 கிரினாட்டின் சோதனைப் பொருளுடன் தாக்கம்
 - 3.6.2.4 $LiAlH_4$ ஆல் தாழ்த்தல்.
- ஏமைட்டுக்களின் தாக்கங்கள் 3.6.3
 - 3.6.3.1 சோடியம் ஐதரொட்சைட்டு நீர்க்கரைச லுடன் தாக்கம் 3.6.3.2 LiAlH₄ உடன் தாழ்த்தல்

அறீமுகம்


பொதுவான ஒட்சிசனைக் கொண்டுள்ள சேதனச் சேர்வைகள் அற்ககோல்கள், பீனோல்கள், ஈதர்கள், காபனைல் சேர்வைகள் (அல்டிகைட்டுக்களும், கீற்றோன்களும்), காபொட்சிலிக் அமிலங்கள் மற்றும் காபொட்சிலிக் அமிலப் பெறுதிகள் (எசுத்தர்கள், ஏமைட்டுக்கள் மற்றும் அமில ஏலைட்டுக்கள்) என்பனவற்றை உள்ளடக்குகின்றன. அலிபற்றிக் காபன் அணுவிற்கு இணைக்கப்பட்ட -OH கூட்டத்தைக் கொண்டுள்ள சேர்வைகள் அற்ககோல்கள் எனினும் பீனோல்கள் அரோமற் சேர்வைகள் ஆகும். இதில் பென்சீன் கருவிற்கு -OH கூட்டம் இணைக்கப்பட்டுள்ளது. அல்டிகைட்டுக்கள், கீற்றோன்கள், காபொட்சிலிக் அமிலங்கள் மற்றும் காபொட்சிலிக் அமிலப் பெறுதிகள் எல்லாம் காபனைல் (C=O) கூட்டத்தைக் கொண்டுள்ளன. இச் சேர்வைகளின் வகைகள் காபனைல் காபனிற்கு இணைக்கப்படும் இரு கூட்டங்களின் தன்மையின் அடிப்படையில் ஒன்றிலிருந்து ஒன்று வேறுபடும்.

3.1 அற்ககோல்களின் கட்டமைப்புக்களும் இயல்புகளும் தாக்கங்களும்

*sp*³ கலப்பு காபன் அணுவிற்கு இணைக்கப்பட்ட -OH கூட்டத்தைக் கொண்டுள்ள சேர்வைகள் அற்ககோல்களாகும். ஒரு -OH கூட்டத்தையுடைய அற்ககோல்கள் ஒரு ஐதிரிக் அற்ககோல்கள் என அழைக்கப்படும். எனினும் இரண்டு, மூன்று, நான்கு போன்ற மற்றையவை, -OH கூட்டங்களை உடையவை. இரு ஐதிரிக் அற்ககோல்கள், மூ ஐதிரிக் அற்ககோல்கள், நாஐதிரிக் அற்ககோல்கள் முதலியன என அழைக்கப்படும். அனேக -OH கூட்டங்களையுடைய அற்ககோல்கள் பொதுவாக பல்ஐதிரிக் (polyhydric) அற்ககோல்கள் என அழைக்கப்படுகின்றன. எமது கலந்துரையாடல் பிரதானமாக ஒரு ஐதிரிக் அற்ககோல்களுடன் வரையறுக்கப்பட்டுள்ளது.


3.1.1 ஓர் ஐதரிக் அந்ககோல்களைப் பாகுபடுத்துதல்

ஓர் ஐதிரிக் அற்ககோல்களும் அற்கைல் ஏலைட்டுக்கள் மாதிரி -OH கூட்டத்தைக் (காபினோல் காபன் - carbinol carbon atom) கொண்டுள்ள காபன் அணுவிற்கு இணைக்கப்படும் H அணுக்களின் எண்ணிக்கைக்கு ஏற்ப முதல் (2H அணுக்கள்), வழி (1H அணு) மற்றும் புடை (H அணுக்கள் இல்லை) எனப் பாகுபடுத்துவது தங்கியுள்ளது.

3.1.2 பௌதீக இயல்புகள்

அற்ககோல்களில் -OH பிணைப்பானது _R – O[&] – H^{&+} ஆக முனைவாக்கமடைந்துள்ளது. எனவே அற்ககோல் மூலக்கூறுகளிற்கிடையே மூலக்கூற்றிடை ஐதரசன் பிணைப்புக்கள் உருவாக்கப் படுகின்றன. (உரு 3.1).

உரு 3.1 எதனோலில் மூலக்கூறுகளிற்கிடையிலான H - பிணைப்பு

இச்சார் வன்மையான மூலக்கூற்றிடை ஐதரசன் பிணைப்பால் அற்ககோல்களின் கொதிநிலைகள், ஒப்பிடக்கூடிய சார் மூலக்கூற்றுத் திணிவுடைய அற்கேன்கள் மற்றும் ஈதர்களிலும் உயர்வான பெறுமானங்களை உடையன. (அட்டவணை 3.1) அற்கோல்களின் அமைப்பொத்த தொடரில் மேலிருந்து கீழ்நோக்கிச் செல்லும்போது கொதிநிலைகள் அதிகரித்துச் செல்லும். அற்கேன்கள் மாதிரி மூலக்கூறின் அற்கைல் தொகுதி கிளைக்கப்படும்போது கொதிநிலை குறைவிற்கு வழிவகுக்கின்றது.

அட்டவணை 3.1	ஒப்பிடக்கூடிய	சார் மூலக்கூற்	றுத் திணிவுடைய	அற்கேன்கள்,	ஈதர்கள்,
	அற்கோல்கள்	என்பனவற்றின்	கொதிநிலைகள்.		

சேர்வை	கட்டமைப்புச் சூத்தீரம்	சார்மூலக்கூற்றுத் திணிவு	கொதிநிலை /⁰C
எதனோல்	CH ₃ CH ₂ OH	46	78
இருமீதைல் ஈதர்	CH ₃ OCH ₃	46	-25
புரொப்பேன்	CH ₃ CH ₂ CH ₃	44	-42
1-புரொப்பனோல்	CH ₃ CH ₂ CH ₂ OH	60	97
2-புரொப்பனோல்	(CH ₃) ₂ CHOH	60	83
ஈதைல் மீதைல் ஈதர்	CH ₃ CH ₂ OCH ₃	60	11
பியூற்றேன்	CH ₃ CH ₂ CH ₂ CH ₃	58	0
1-பியூற்றனோல்	CH ₃ CH ₂ CH ₂ CH ₂ OH	74	118
2-பியூற்றனோல்	CH ₃ CH(OH)CH ₂ CH ₃	74	99
2-மீதைல் -2-புரொப்பனோல்	(CH ₃) ₃ COH	74	82
இரு ஈதைல் ஈதர்	CH ₃ CH ₂ OCH ₂ CH ₃	74	35
பென்ரேன்	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	72	36
1-பென்ரனோல்	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OH	88	138
ஈதைல்புரொப்பைல் ஈதர்	CH ₃ CH ₂ CH ₂ OCH ₂ CH ₃	88	64
எக்சேன்	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH	3 86	68

குறைவான சார்மூலக்கூற்றுத் திணிவுடைய அற்ககோல்கள் நீரில் கரையும். நீர் மூலக்கூறுகளுடன் -OH கூட்டம் ஐதரசன் பிணைப்புக்களை ஏற்படுத்துவதன் காரணமாக அற்ககோல்கள் நீரில் கரைகின்றன. நீரில் கரைவதற்கு அற்ககோல் மூலக்கூறின் முனைவாக்கமற்ற அற்கைல் தொகுதி தடையாக உள்ளது. நேர்ச் சங்கிலி அற்ககோல்களின் அமைப்பொத்த தொடரில் மேலிருந்து

க.பொ.த. (உ/த) இரசாயனம்: அல

ஒட்சிசனைக் கொண்டுள்ள சேதனச் சேர்வைகள்

கீழாக -OH கூட்டத்திற்குச் சார்பாக முனைவாக்கமற்ற அற்கைல் தொகுதிகளின் பருமன் படிப்படியாக அதிகரித்துச் செல்கின்றன. இதன் விளைவாக அற்ககோல்களின் நீர்க் கரைதிறன் படிப்படியாகக் குறைவடையும் (அட்டவணை 3.2).

அட்டவணை 3.2 சில நேர்ச்சங்கிலி அற்ககோல்களின் கொதிநிலைகளும் கரைதிறனும் (நீரில்)

அந்ககோல்	கட்டமைப்புச் சூத்திரம்	கொதிநிலை /⁰C	கரைதீ நன் (g/100g H ₂ O)
மெதனோல்	CH ₃ OH	65	α
எதனோல்	CH ₃ CH ₂ OH	78	α
1-புரொப்பனோல்	CH ₃ CH ₂ CH ₂ OH	82	α
1-பியூற்றனோல்	CH ₃ (CH ₂) ₂ CH ₂ OH	118	7.9
1-பென்ரனோல்	CH ₃ (CH ₂) ₃ CH ₂ OH	138	2.3
1-எக்சனோல்	CH ₃ (CH ₂) ₄ CH ₂ OH	158	0.6
1-எப்ரனோல்	CH ₃ (CH ₂) ₅ CH ₂ OH	176	0.2
1-ஒக்கரனோல்	CH ₃ (CH ₂) ₆ CH ₂ OH	195	0.05

α - எந்த விகிதத்திலும் கரையக்கூடியன.

3.1.3 அற்கோல்களின் தாக்கங்கள்

-OH பிணைப்புப் பிளவடைதல், C - O பிணைப்பு பிளவடைதல் என்பன உள்ளடக்கியதாக மேற் கொள்ளப்படும் அற்ககோல்களின் தாக்கங்கள்.

3.1.3.1 O-H பீணைப்பு பீளவடைதலுடன் ஈடுபடும் தாக்கங்கள்

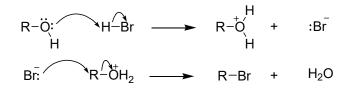
(அ) சோடியத்துடன் தாக்கம் (மற்றும் வேறு கார உலோகங்கள்)

O - H பிணைப்பின் முனைவாக்கம் காரணமாக அற்ககோல்கள் அமில நடத்தையைக் காட்டுவதுடன், சோடியத்துடன் தாக்க மடைந்து ஐதரசன் வாயுவை வெளியேற்றுவதுடன் சோடியம் அற்கொட்சைட்டுக்களையும் உண்டாக்குகின்றன. அற்கொட்சைட்டு அயன் ஒரு வன்கருநாடியும் அத்துடன் ஒரு வன்மூலமும் ஆகும்.

 $RO-H + Na \longrightarrow RO + H_2$

எனினும் சோடியம் ஐதரொட்சைட்டுடன் கணிசமாக (......) தாக்கமடைந்து சோடியம் அற்கொட்சைட்டைக் கொடுப்பதற்கு அற்ககோல்களின் அமிலத்தன்மை போதியதாக இல்லை. கீழே காட்டப்பட்டுள்ள சமநிலை முக்கியமாக அற்ககோல் பக்கம் இருக்கும். எனவே அற்ககோல்கள் நீரிலும் அமிலத்தன்மை குறைவானவை.

> ROH


(ஆ) காபொட்சிலிக் அமிலத்துடன் தாக்கம். (அற்ககோல்களின் ஏசைலேற்றத்தால் எசுத்தரைக் கொடுத்தல்.)

அற்ககோல்கள் காபொடசிலிக் அமிலங்களுடன் தாக்கமடைந்து எசுத்தர்களைக் கொடுக்கின்றன. (எசுத்தராக்கல் தாக்கம்). இவ் எசுத்தராக்கல் தாக்கத்தில் செறிந்த சல்பூரிக் அமிலம் ஊக்கியாகத் தொழிற்படுகின்றது.

3.1.3.2 C-O பீணைப்புப் பீளவடைதலுடன் ஈடுபடும் கருநாட்டப் பீரதியீட்டுத் தாக்கங்கள்

(அ) ஐதரசன் ஏலைட்டுக்க்ளுடன் தாக்கங்கள் (HBr அல்லது HI)

அற்ககோல்கள் HBr அல்லது HI உடன் கருநாட்டப் பிரதியீட்டுத் தாக்கத்தில் ஈடுபட்டு அதை ஒத்த அற்கைல் புரோமைட்டுக்களை அல்லது அற்கைல் அயடைட்டுக்களைக் கொடுக்கும். அமில முன்னிலையில் (HBr அல்லதுHI) O அணுவின் புரோத்திரனேற்றம், -OH கூட்டத்தை நல்ல வெளியேறும் கூட்டமாக (H₂O) மாற்றும்.

இது கருநாட்டப் பிரதியீட்டுத் தாக்கமாகும். இத்தாக்கத்தில் Br கருநாடியாகத் தொழிற்படும். H₂O வெளியேறும் கூட்டமாகும்.

அற்ககோல்கள் HCl உடன் லூயி அமிலங்கள் அல்லது அமிலங்கள் முன்னிலையில் மாத்திரம் தாக்கமடையும்.

முதல் வழி, புடை அற்ககோல்களை லூக்காசின் சோதனையால் வேறுபடுத்தலாம் என்னும் செய்கையைப் பயன்படுத்தவும் இத் தாக்கத்தில் ROH, RCl ஆக மாற்றப்படும். லூயி அமிலமான ZnCl, ஊக்கியாக இத்தாக்கத்தில் தொழிற்படுகின்றது. அற்கைல் ஏலைட்டுக்கள் நீரில் கரையாத காரணத்தால், தாக்கம் தொடரும்போது தாக்கக் கலவை புகாராகவும் கலங்கலாகவும் மாறும். சோதனைப் பொருட்களைக் கலந்த பின்பு, கலங்கள் தோன்று வதற்கான நேரத்தை முதல், வழி, புடை அற்ககோல்களை வேறுபடுத்துவதற்கு பயன் படுத்தலாம். மேலேயுள்ள கருநாட்டப் பிரதியீட்டுத் தாக்கம் தரப்பட்ட தாக்க நிபந்தனைகளின் கீழ் இரு படிகளில் நடைபெறுகின்றன. புடை அற்ககோல்கள் உறுதியான இடைநிலை காபோகற்றயனை உண்டாக்குவதால், புடை அற்ககோல்கள் மிகக் குறைந்த நேரத்தில் கலங்களை உண்டாக்கும். வழி அற்ககோல்கள் கலங்கலை உண்டாக்குவதற்கு நீண்ட நேரத்தை எடுக்கும். முதல் அற்ககோல்கள் மிக மெதுவாகத் தாக்கமடையும்.

(ஆ) பொசுபரசு மூஏலைட்டுக்களுடன் தாக்கம். (PCl,அல்லது PBr,) அற்ககோல்கள் PCl, உடனும் PBr, உடனும் தாக்கமடைந்து முறையே அற்கைல் குளோரைட்டுக்களையும் அற்கைல் புரோமைட்டுக்களையும் கொடுக்கும்.

3 ROH + PCI₃ \longrightarrow 3 RCI + H₃PO₃ 3 ROH + PBr₃ \longrightarrow 3 RBr + H₃PO₃

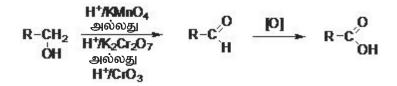
(இ) பொசுபரசு ஐங்குளோரைட்டுடன் தாக்கம்

அற்ககோல்கள் PCl_s உடன் தாக்கடைந்து அற்கைல் குளோரைட்டுக்களைக் கொடுக்கும்

 $ROH + PCI_5 \longrightarrow RCI + POCI_3 + HCI$

மேலே (ஆ) இலும் (இ) இலும் விபரிக்கப்பட்ட அற்ககோலிற்கும் பொசுபரசு ஏலைட்டுக் களுக்குமான தாக்கங்களும் கருநாட்டப் பிரதியீட்டுத் தாக்கங்களாகும். இதில் ஏலைட்டு அயன் கருநாடியாகத் தொழிற்படுகின்றது.

3.1.3.3 நீக்கல் தாக்கம்

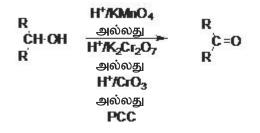

அற்ககோல்களை செறிந்த $\mathrm{H_2SO_4}$ உடன் வெப்பமேற்றும்போது அல்லது அலுமினாவுடன் உயர் வெப்பநிலைக்கு வெப்பமேற்றும்போது நீக்கல் தாக்கத்திற்குட்படும். அற்ககோலிலிருந்து ஒரு மூலக்கூறு நீரகற்றப்படும் போது, தாக்கமானது அற்ககோல்களின் நீரகற்றலாகும். இத் தாக்கத்தின் போது அற்கீன் விளைவாக உருவாக்கப்படும்.

3.1.3.4 அந்ககோல்களின் ஒட்சீயேந்நம்

அற்ககோல்கள் சில ஒட்சியேற்றும் கருவிகளுடன் ஒட்சியேற்றத்திற்குட்படலாம். அற்ககோல் முதல், வழி அல்லது புடை என்பதில் ஒட்சியேற்றத்தின் விளைவு தங்கியுள்ளது. அற்ககோல்களின் ஒட்சியேற்றம் $\rm H^+/KMnO_4$ அல்லது $\rm H^+/K_2Cr_2O_7$ அல்லது $\rm H^+/CrO_3$ உடன் மேற்கொள்ளப்படலாம்.

(அ) முதல் அற்ககோல்களின் ஒட்சியேற்றம்

அற்ககோல்கள் மேலே உள்ள ஒட்சியேற்றும் கருவிகளுடன் அதை ஒத்த முதல் அல்டிகைட்டினூடாக காபொட்சிலிக் அமிலமாக ஒட்சியேற்றப்படும்.



ஒட்சிசனைக் கொண்டுள்ள சேதனச் சேர்வைகள்

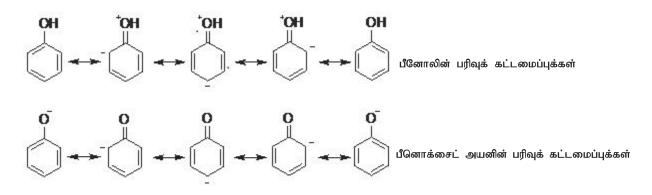
ஒட்சியேற்றத் தாக்கமானது பிரிடினியம் குளோரோகுரோமேற்று [C₅H₅NH]⁺[CrO₃Cl] (PCC) பயன்படுத்தும்போது அல்டிகைட் உருவாகும் நிலையில் நிறுத்தப்படும்.

(ஆ) வழி அற்ககோல்களின் ஒட்சியேற்றம்

வழி அற்ககோல்கள் மேலே உள்ள சோதனைப் பொருட்களுடன் ஒட்சியேற்றத்திற்குட்பட்டு கீற்றோன்களைக் கொடுக்கும்.

(இ) புடை அற்ககோல்களின் ஒட்சியேற்றம்

முதல், வழி அற்ககோல்கள் ஒட்சியேற்றமடையும் நிபந்தனைகளின் கீழ் பொதுவாக புடை அற்ககோல்கள் ஒட்சியேற்றத்திற்குட்படாது.


3.2 பீனோல்களின் கட்டமைப்புக்களும் இயல்புகளும் தாக்கங்களும்

3.2.1 பீனோல்களின் அமிலத்தன்மை

அரோமற்றிக் சேர்வைகளில் பென்சீன் வளையத்திலுள்ள காபன் அணுவிற்கு OH கூட்டம் நேரடியாக இணைக்கப்படும்போது பீனோல்கள் என்று அழைக்கப்படும். நீர்க்கரைசலில் அற்க கோல்களும் பீனோல்களும் கீழே காட்டப்பட்டுள்ளவாறு கூட்டற்பிரிகை அடைகின்றன.

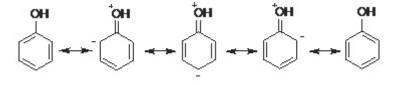
 $ROH + H_2O \longrightarrow RO^- + H_3O^+$ $C_6H_5OH + H_2O \longrightarrow C_6H_5O^- + H_3O^+$

பீனோல்கள் அற்ககோல்களிலும் அமிலத்தன்மை கூடியவை ஆகும். இது குறிப்பது, மேலே உள்ள சமநிலையில், சமநிலைப்புள்ளி ஆனது பீனோல்களிற்கு அற்ககோல்களிலும் பார்க்க வலது பக்கம் நோக்கிக் கூடவாகக் காணப்படும். இதற்கான காரணம் என்னவெனில், பீனோல் சார்பான பீனொக்சைட்டு அயனின் உறுதியானது அற்ககோல் சார்பான அற்கொட்சைட் அயனின் உறுதியிலும் கூடவாகும். இதனைப் பீனோலினதும் அதன் அனயனினதும் பரிவுக் கட்டமைப்புக் களைக் கருதுவதனால் விளங்கிக் கொள்ள முடியும்.

உரு 3.2 பீனோலினதும் பீனொக்சைட் அயனினதும் பரிவுக் கட்டமைப்புக்கள்

பீனோல் மாதிரி அல்லாது அனயனின் பரிவுக் கட்டமைப்புக்களில் ஏற்றப் பிரிவு இல்லை என்பதால் அனயன் பரிவால் உறுதியாக்கப்படுவது பீனோல் பரிவால் உறுதியாக்கப்படுவதிலும் கூடவாகும் (உரு 3.2). அற்ககோல் அல்லது அதன் அனயனிற்கு இவ்வாறான பரிவால் உறுதி யாக்கப்படும் தன்மை இல்லை என்பதாகும்.

3.2.2 O-H பீணைப்புப் பீளவு அடைதலுடன் ஈடுபடும் தாக்கங்கள்


பின்வரும் உதாரணங்கள் மூலம் பீனோல்களின் உயர் அமிலத்தன்மையை உறுதிப்படுத்தலாம். அற்ககோல்கள் மாதிரி அல்லாது பீனோல்கள் NaOH உடன் தாக்கமடைந்து சோடியம் பீனொக் சைட்டைக் கொடுக்கும். எனினும் பீனோல்களினது அல்லது அற்ககோல்களினது அமிலத் தன்மை NaHCO₃ உடன் தாக்கமடைந்து CO₂ வாயுவை வெளியேற்றுவதற்கு போதுமானதாக இல்லை.

$$2 C_6H_5OH + 2Na \longrightarrow 2 C_6H_5O^-Na^+ + H_2$$

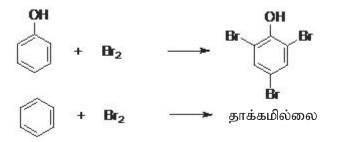
 $C_6H_5OH + NaOH \longrightarrow C_6H_5O^-Na^+ + H_2O$

3.2.3 C-O பீணைப்பு உடைதலினால் நிகழமுடியாத கருநாட்டப் பீரதியீட்டுத் தாக்கங்கள்

அற்ககோல்கள் மாதிரி அல்லாது பீனோல்கள் கருநாட்டப் பிரதியீட்டுத் தாக்கங்களில் ஈடுபட மாட்டாதன. ஒரு படி அல்லது இரு படித் தாக்கப் பொறிமுறைகள் நடைபெற முடியாதன. காரணம்:

(அ) ஒட்சிசன் அணுவிலுள்ள தனிச்சோடி இலத்திரன்கள் ஓரிடப்பாடற்று பென்சீன் வளையத்தினுள் செல்வதால் C - O பிணைப்பு நீளம் (*sp*² கலப்பாக்க அணு) குறைக்கப்படுவதுடன் வன்மையாக்கவும் (இரட்டைப் பிணைப்புத் தன்மை) படும். இதைப் பரிவு மூலம் காட்டலாம்.

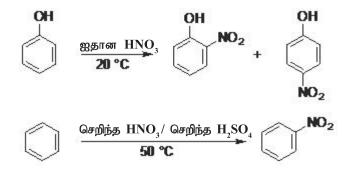
(ஆ) பீனைல் கற்றயன் உறுதியற்றது.


க.பொ.த. (உ/த) இரசாயனம்: அலகு 9 | ஒட்சிசனைக் கொண்டுள்ள சேதனச் சேர்வைகள்

3.3 பீனோல்களிலுள்ள பென்சீன் வளையத்தின் தாக்குதன்மை

பீனோலிலுள்ள பென்சீன் வளையத்துடன் O அணுவினுள்ள தனிச்சோடி இலத்திரன்கள் ஓரிடப் பாடற்றுக் காணப்படுவதால் பீனோலிலுள்ள பென்சீன் வளையத்தின் இலத்திரன் செறிவானது பென்சீனிலும் கூடவாகும். எனவே பீனோலிலுள்ள பென்சீன் வளையமானது இலத்திரனாட்டச் சோதனைப் பொருட்களிற்குப் பென்சீனிலும் கூடிய தாக்குத் தன்மை உடையதாகும். பீனோலிலுள்ள O-H கூட்டமானது இலத்திரனாட்டப் பிரதியீட்டுத் தாக்கங்களில் ஒதோ மற்றும் பரா நிலைகளை பீனோலிலுள்ள O-H கூட்டம் சார்பாகத் திசைப்படுத்தும். பீனோலின் இலத்திரனாட்டப் பிரதியீட்டுத் தாக்கங்களை ஒத்த நிபந்தனைகளில் பென்சீனின் அதே தாக்கங்களுடன் ஒப்பிடும்போது இலத்தர னாடிகளிற்கு பீனோலின் பென்சீன் வளையமானது கூடிய தாக்குதன்மை உடையது என்பது தெளிவாகின்றது. பின்வரும் உதாரணங்களைக் கருதுக.

3.3.1 புரோமீனுடன் பீனோலின் தாக்கம்


பீனோல் புரோமீன் நீருடன் விரைவாகத் தாக்கமடைந்து 2, 4, 6 - மூபுரோமோ பீனோலைக் கொடுக்கும். ஆனால் பென்சீன் புரோமீன் நீருடன் தாக்கமடையாது.

இத்தாக்கத்தை புரோமீன் நீருடன் நடைபெறச் செய்யும்போது 2, 4, 6 - மூபுரோமோ பீனோல் வெண்ணிற வீழ்படிவாகப் பெறப்படும்.

பீனோலின் நைத்திரேந்றம் 3.3.2

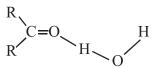
பீனோலின் நைத்திரேற்றம் 20 °C இல் ஐதான HNO, உடனேயே நடைபெறும். எனினும் பென்சீனின் நைத்திரேற்றத்திற்கு உயர் வெப்பநிலை, செறிந்த $\mathrm{HNO}_3/$ செறிந்த $\mathrm{H}_2\mathrm{SO}_4$ கலவை தேவைப்படும்.

பீனோல்களுடன் பிரீடல் - கிராவ் இன் அற்கைல் ஏற்றத் தாக்கங்களை நடைபெறச் செய்ய முடியாது. ஏனெனில் பீனோல்களிற்கும் பிரீடல் - கிராவ் (Friedel-Crafts) இன் ஊக்கிக்குமிடையே சிக்கல் உருவாவதாலாகும் என்பது குறிப்பிடத்தக்கது.

3.4 அலிடிகைட்டுக்கள், கீற்றோன்கள் என்பனவற்றீன் கட்டமைப்புக்கள், இயல்புகள் மற்றும் தாக்கங்கள்.

அலிடிகைட்டுக்கள், கீற்றோன்கள் இரண்டும் காபனைல் (>C=O) என்னும் தொழிற்படும் கூட்டத்தைக் கொண்டுள்ளன. அலிடிகைட்டுக்களில் காபனைல் காபன், H அணுவுடனும் அற்கைல் அல்லது ஏரைல் (அரோமற்றிக்) கூட்டத்துடனும் இணைக்கப்பட்டுள்ளது. எனினும் எளிய அலிடிகைட்டான போமலிடிகைட்டில் (மெதனல்) உள்ள 2 H அணுக்களும் காபனைல் காபனிற்கு இணைக்கப் பட்டுள்ளன. கீற்றோன்களில் காபனைல் காபனிற்கு இணைக்கப்பட்ட கூட்டங்கள் ஒவ்வொன்றும் ஒன்றில் அற்கைல் அல்லது ஏரைல் கூட்டமாகும். காபனைல், காபன் அணுவானது sp^2 கலப்பாக்க மாகும். அத்துடன் இதற்கு இணைக்கப்பட்ட மூன்று அணுக்களும் ஒரு தளத்தில் இருக்கும் (தளமுக்கோணி) காபன் ஒட்சிசன் இரட்டைப் பிணைப்பானது ஒரு σ - பிணைப்பையும் ஒரு π - பிணைப்பையும் கொண்டுள்ளது.

3.4.1 பௌதீக இயல்புகள்


மூலக்கூறுகளுக்கிடையே இருமுனைவு - இருமுனைவு இடைத்தாக்கம் இருப்பதனால், அலிடிகைட்டுக்களினதும் கீற்றோன்களினதும் கொதிநிலைகள் அதை ஒத்த ஒப்பிடக்கூடிய சார் மூலக்கூற்றுத்திணிவுடைய அற்கேன்களிலும் கூடவாகும். எனினும் அவை மூலக்கூறுகளுக்கிடையே H - பிணைப்புக்களை உண்டாக்காமையினால், அவற்றின் கொதிநிலைகள் ஒப்பிடக்கூடிய சார் மூலக்கூற்றுத்திணிவுடைய அற்ககோல்களிலும் குறைவாகும் (அட்டவணை 3.3). ஒட்சிசனைக் கொண்டுள்ள சேதனச் சேர்வைகள்

அட்டவணை 3.3 ஒப்பிடக்கூடிய சார் மூலக்கூற்றுத் திணிவுகளையுடைய அலிடிகைட்டுக்கள், கீற்றோன்கள், அற்ககோல்கள் மற்றும் அற்கேன்கள் என்பனவற்றின் கொதிநிலைகளும் நீர்க் கரைதிறன்களும்

சேர்வை	கட்டமைப்புச் சூத்திரம்	சார்மூலக் கூற்றுத் திணிவு	கொதிநிலை /⁰C	நீர்க்கரைதிறன் g/100 mL)*
எதனல்	CH ₃ CHO	44	21	α
எதனோல்	CH ₃ CH ₂ OH	46	78	α
புரொப்பேன்	CH ₃ CH ₂ CH ₃	44	-42	இல்லை
புரொப்பனல்	CH ₃ CH ₂ CHO	58	49	16
புரொப்பனோன்	CH ₃ COCH ₃	58	56	α
1-புரொப்பனோல்	CH ₃ CH ₂ CH ₂ OH	60	97	α
2-புரொப்பனோல்	(CH ₃) ₂ CHOH	60	83	α
பியூற்றேன்	CH ₃ CH ₂ CH ₂ CH ₃	58	0	இல்லை
பியூற்றனல்	CH ₃ CH ₂ CH ₂ CHO	72	76	7
2-பியூற்றனோன்	CH ₃ COCH ₂ CH ₃	72	80	26
1-பியூற்றனோல்	CH ₃ CH ₂ CH ₂ CH ₂ OH	74	118	7.9
2-பியூற்றனோல்	CH ₃ CH(OH)CH ₂ CH ₃	74	99	29
பென்ரேன்	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	72	36	இல்லை
பென்ரனல்	CH ₃ CH ₂ CH ₂ CH ₂ CHO	86	103	1
2-பென்ரனோன்	CH ₃ COCH ₂ CH ₂ CH ₃	86	102	6
1-பென்ரனோல்	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH	88	138	2.3
எக்சேன்	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	86	68	இல்லை

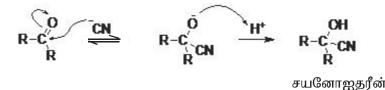
α - எந்த விகிதத்திலும் கலக்கும் தகவுடையன.

ஆயினும் அலிடிகைட்டுக்களும் கீற்றோன்களும் நீருடன் மூலக்கூற்றிடை H- பிணைப்பை ஏற்படுத்துவதில் பங்குபற்றக்கூடியன (உரு 3.3). எனவே குறைவான சார்மூலக்கூற்றுத் திணிவுடைய அலிடிகைட்டுக்களும் கீற்றோன்களும் நீரில் கரையக்கூடியன (அட்டவணை 3.3).

உரு 3.3 அல்டிகைட்டுக்களினதும் கீற்றோன்களினதும் நீருடனான மூலக்கூற்றிடை H- பிணைப்பு

3.4.2 அலிடிகைட்டுக்களினதும் கீற்றோன்களினதும் தாக்கங்கள்

உயர் மின்னெதிர்த்தன்மை உடைய O அணுவினால் காபனைல் கூட்டமானது முனைவாக்க முடைய கூட்டமாகும். எனவே C அணுவானது இலத்திரன் பற்றாக்குறை உடையதாக இருப்பதால் கருநாடியுடன் தாக்கமடையக் கூடியதாகும். எனவே C அணுவானது மூன்று அணுக்களுடன் மாத்திரம் இணைக்கப் பட்டுள்ளதால் நிரம்பாத் தன்மை உடையதாகும். எனவே இது கருநாடியுடன் புதிய பிணைப்பை உண்டாக்கக் கூடியது. இச்செய்கையின்போது *π* - இலத்திரன்கள் Ο அணுவிற்கு இடமாற்றப்படுவதனால் எதிரேற்றத்தைப் பெறும். இவ் எதிரேற்றமானது, நேரேற்றமுள்ள துணிக்கைகள் இணைவதால் நடுநிலைப்படுத்தப்படும் (பெரும்பாலும் ஒரு புரோத்திரன்). எனவே அலிடிகைட்டுக் களினதும் கீற்றோன்களினதும் சிறப்பியல்பான தாக்கங்கள் கருநாட்டக் கூட்டல் தாக்கங்களாகும்.


3.4.3 கருநாட்டக் கூட்டல் தாக்கங்கள்

3.4.3.1 அலிடிகைட்டுக்கள் மற்றும் கீற்றோன்கள் என்பனவற்றுடன் HCN இன் தாக்கம்

அலிடிகைட்டுக்கள் மற்றும் கீற்றோன்கள் என்பனவற்றுடன் HCN ஐத் தாக்கமடையவிடல் கருநாட்டக் கூட்டல் தாக்கமாகும். இது காபனைல் சேர்வையையும் சோடியம் சயனைட்டு நீர்க்கரைசலையும் கொண்டுள்ள கலவைக்குள் ஐதான கனிப்பொருள் அமிலத்தைச் சேர்ப்பதன் மூலம் நடத்தப்படும். இத்தாக்கத்தில் CN⁻ அயன் கருநாடியாகத் தொழிற்படும்.

இத்தாக்கத்தின் பொறிமுறை பின்வருமாறு:

3.4.3.2 கிரீனாட்டின் சோதனைப் பொருட்களுடன் தாக்கங்கள்

கிரினாட்டின் சோதனைப் பொருட்களில் C - Mg பிணைப்பானது பின்வருமாறு முனைவாக்கமடையும்.

δ- δ+ R-MgX

எனவே கிரினாட்டின் சோதனைப் பொருளிலுள்ள R⁻ தொகுதி, R - Mg பிணைப்பிலுள்ள இலத்திரன் சோடியுடன் சேர்ந்து கருநாடியாக காபனைல் காபனுடன் தாக்கமடையும். இது அற்கொட்சைட்டு மகனீசியம் ஏலைட்டு உருவாவதற்கு முன்னெடுத்துச் செல்லும்.

⊔ц, 1

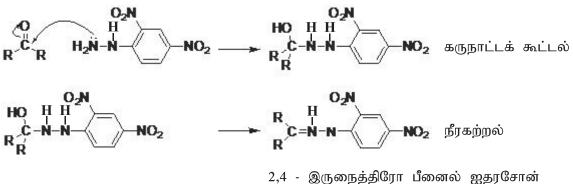
அற்கொட்சி மகனீசியம் புரோமைட்டு

அற்கொட்சி மகனீசியம் புரோமைட்டின் நீர்ப்பகுப்பு அதை ஒத்த அற்ககோலைக் கொடுக்கும். இது அமில நீர்க்கரைசலினால் நடத்தப்படும்.

$$\begin{array}{cccc} \Box \mu_{2} & OMgBr & OH \\ H_{3}C \overset{\dot{C}}{R} \overset{\dot{C}}{R} \overset{C}{R} & H^{\dagger}/H_{2}O & H_{3}C \overset{\dot{C}}{R} \overset{\dot{C}}{R} \overset{\dot{C}}{R} \end{array}$$

ஒட்சிசனைக் கொண்டுள்ள சேதனச் சேர்வைகள்

முழுத்தாக்கம் பின்வருமாறு:


$$H_3C$$
, CH_3 , H_2C , H_3C

போமலிடிகைட் தவிர்ந்த மற்ற எல்லா அ**லி**டிகைட்டுக்களும் வழி அற்ககோல்களைக் கொடுக்கும். எனினும் கீற்றோன்கள் கிரினாட்டின் சோதனைப் பொருள்களுடன் புடை அற்ககோல்களைக் கொடுக்கும். போம**லி**டிகைட் முதல் அற்ககோலைக் கொடுக்கும்.

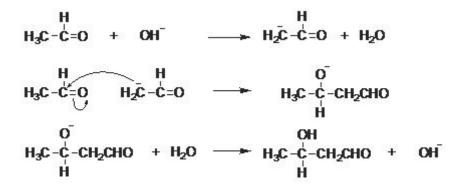
நீரற்ற நிபந்தனைகளின் கீழ் கிரினாட்டின் சோதனைப் பொருளைத் தயாரித்து, அ**லி**டிகைட்டுக்கள், கீற்றோன்கள் என்பனவற்றுடன் தாக்கமடைய விடப்படும். எனவே அற்கொட்சைட்டு மகனீசியம் ஏலைட்டு தயாரித்தலும் அதன் நீர்ப்பகுப்பும் இரு வெவ்வேறான படிகளாகும்.

3.4.3.3 2,4 - இரு நைத்திரோ பனைல் ஐதரசீனுடன் தாக்கம் (2,4 - D.N.P அல்லது பரடியின் சோதனைப் பொருள் - Brady's reagent)

இத்தாக்கத்தில் அலிடிகைட் அல்லது கீற்றோனுடன் 2,4 - இருநைத்திரோ பீனைல் ஐதரசீனின் கருநாட்டக் கூட்டல் முதலில் நடைபெறும். பின்பு இடைநிலை விளைவிலிருந்து நீர் மூலக்கூறு அகற்றப்பட்டு, இறுதி விளைவாக 2,4 - இருநைத்திரோ பீனைல் ஐதரசோன் உண்டாகும்.

(கடும் மஞ்சள் அல்லது செம்மஞ்சள் வீழ்படிவு)

இத்தாக்கம் மேலே காட்டப்பட்டுள்ளவாறு இருபடிகளில் நடைபெறும். கருநாட்டக் கூட்டலினால் முதலில் பெறப்படும் ஐதரொட்சி விளைவை தாக்க நிபந்தனைகளின் கீழ் வேறுபடுத்த முடியாது. மற்றும் நீரகற்றப்பட்டு இறுதி விளைவைக் கொடுக்கும். இத்தாக்கம் அ**லி**டிகைட்டுக்கள் மற்றும் கீற்றோன்கள் என்பனவற்றை இனம் காணப் பயன்படுத்தப்படும்.


3.4.4 அலீடிகைட்டுக்களினதும் கீந்நோன்களினதும் தன்ஒடுக்கல் தாக்கம்

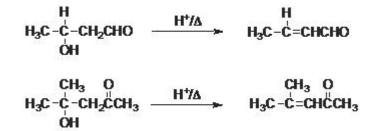
காபனைல் காபனிற்கு நேரடியாகப் பிணைக்கப்பட்டுள்ள காபனுக்கு இணைக்கப்பட்ட Η அணுக்கள் (α – Η) காபனைல் தொகுதியின் வன்மையான இலத்திரன் வழங்கும் தன்மையினால் அமிலத் தன்மையாக மாறும். இவ் α – Η ஆனது, புரோத்திரனாக இருப்பதால் காரத்தினால் அகற்றப்படும். இவ் *α* – Η ஆனது காரத்தினால் புரோத்திரனாகச் சுருக்கப்பட்டிருக்கலாம். இவ்வாறு உருவாக்கப் படும் காபனனயன் கீழே காட்டப்பட்டுள்ளவாறு பரிவினால் உறுதியாக்கப்படும்.

$$\begin{array}{cccccc} H & R^{1} & & R^{1} \\ R - \dot{C} - \dot{C} = 0 & + & OH^{-} & \longrightarrow & R - \ddot{C} - \dot{C} = 0 & + & H_{2}O \\ H & & H & & H \\ R^{1} & & & H \\ R - \ddot{C} - \dot{C} = 0 & & & & R - C = \dot{C} - \ddot{O} \\ H & & & H & & & H \end{array}$$

இக் காபனனயன் கருநாடியாகத் தொழிற்படக்கூடியது. மற்றும் இது அயனாக்கமடையாத கீற்றோன் அல்லது அலிடிகைட் மூலக்கூறின் காபனைல் தொகுதியின் காபன் அணுவைத் தாக்கும். ஆகையால் α – Η ஐக் கொண்டுள்ள அலிடிகைட்டுக்களும் கீற்றோன்களும் கார ஊக்கிக்குரிய தன்ஒடுக்கல் தாக்கங்களில் ஈடுபடக்ககூடியன.

சில உதாரணங்களைப் பார்ப்போம்.

முழுத்தாக்கம் ஆனது,


NaOH நீர்க்கரைசல் முன்னிலையில் அசற்றோனின் ஒடுங்கல் தாக்கம்

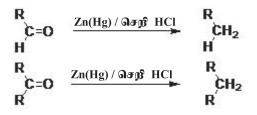
$$\begin{array}{cccc} CH_3 & OH^{-} & CH_3 \\ H_3C-C=O & \longrightarrow & H_2C-C=O \\ CH_3 & CH_3 & CH_3 & O \\ H_3C-C=O & H_2C-C=O & \longrightarrow & H_3C-C-CH_2CH_3 \\ & OH \end{array}$$

ஒட்சிசனைக் கொண்டுள்ள சேதனச் சேர்வைகள்

முழுத்தாக்கம் ஆனது,

மேலே பெறப்பட்ட கூட்டல் விளைவுகளானது அமிலங்களுடன் வெப்பமேற்றும்போது இலகுவாக நீரகற்றலுக்குட்படும்.

3.4.5 இலித்தியம், அலுமீனியம் ஐதரைட்டு (LiAlH₄) அல்லது சோடியம் போரோஐதரைட்டு(NaBH₄) என்பனவற்றீனால் அலிடிகைட்டுக்களையும் கீற்றோன்களையும் தாழ்த்தல்.


அலிடிகைட்டுக்கள் LiAlH₄ உடன் அல்லது NaBH₄ உடன் முதல் அற்ககோல்களாகத் தாழ்த்தப் படும். எனினும் கீற்றோன்கள் வழி அற்ககோல்களாகத் தாழ்த்தப்படும். இத் தாழ்த்தல் தாக்கங் களில் LiAlH₄ மற்றும் NaBH₄ இரண்டும் ஐதரைட்டு (H⁻) அயனைக் கொடுக்கும். இவ் ஐதரைட்டு அயன் கருநாடியாகக் காபனைல் காபனுடன் தாக்கமடையும். எனவே இத் தாழ்த்தல் தாக்கங்கள், கருநாட்டக்கூட்டல் தாக்கங்களாகக் கருதப்படும்.

R C=O H	1. LiAlH₄/ нэј 2. H⁺/ H₂O	R H-C-OH H
R C=O R	1. LiAlH₄/ ஈதர் 2. H⁺/ H₂O	R R≓C-OH H
R C=O H	NaBH ₄ / மெதனோல் 🎽	R H-C-OH H
R C=O R	NaBH ₄ / மெதனோல் ————————————————————————————————————	R R-C-OH H

LiAlH₄ஐ நீர் அல்லது மெதனோல் முன்னிலையில் பயன்படுத்தும்போது தாக்குதன்மை கூடியது என்பதைக் குறிப்பிடவும்.

3.4.6 அ**ல்**டிகைட்டுக்கள் மற்றும் கீற்றோன்கள் என்பனவற்றை Zn(Hg)/செறி HCl இனால் தாழ்த்தல். (கிளமன்சனின் தாழ்த்தல் - Clemmenson)

இத்தாழ்த்தல் தாக்கத்தில் C=O கூட்டமானது மெதலீன் கூட்டமாகத் தாழ்த்தப்படும். இவ்வாறாக அ**ல**டிகைட்டுக்கள் மற்றும் கீற்றோன்கள் இரண்டும் ஐதரோகாபன்களாக மாற்றப்படும்.

3.4.7 அலீடிகைட்டுக்களின் ஒட்சீயேற்றம்

அலிடிகைட்டுக்கள், ஒட்சியேற்றும் கருவிகளான அமிலமாக்கப்பட்ட பொற்றாசியம் இருகுரோமேற்று, அல்லது அமிலமாக்கப்பட்ட குரோமிக் ஒட்சைட்டு அல்லது அமிலமாக்கப்பட்ட பொற்றாசியம் பரமங்கனேற்று மற்றும் மென் ஒட்சியேற்றும் கருவிகளான தொலனின் சோதனைப் பொருள் (Tollen's reagent), பீலிங்கின் கசைல் (Fehling solution) போன்றவற்றினால் காபொட்சிலிக் அமிலங்களாக ஒட்சியேற்றப்படும். அமில ஊடகத்தில் அலிடிகைட்டுக்கள் காபொட்சிலிக் அமிலங்களாக ஒட்சியேற்றப்படும். எனினும் தொலனினதும், பிலிங்கினதும் கரைசல்கள் காரமாதலால், விளைவு காபொட்சிலிக் அமிலத்தின் உப்பு ஆகும். இச்சோதனைப் பொருட்களுடன் கீற்றோன்கள் ஒட்சியேற்றத்திற்கு உட்படமாட்டாதன.

3.4.7.1 தொலனின் (Tollen) சோதனைப் பொருளினால் ஒட்சீயேற்றல்.

தொலனின் சோதனைப் பொருளானது, Ag⁺ஐ [Ag(NH₃)₂]⁺ என்ற அமைப்பில் கொண்டுள்ள கரைசலாகும். அலிடிகைட்டுக்களைக் காபொட்சிலிக் அமிலங்களாக ஒட்சியேற்றும்போது, Ag⁺ அயன்கள் உலோக வெள்ளியாகத் தாழ்த்தப்பட்டுச் சோதனைக் குழாயில் வெள்ளி ஆடியைக் கொடுக்கும்.

$$\begin{array}{c} \widehat{\mathsf{C}} \\ \mathsf{R}-\widehat{\mathsf{C}}' \\ \mathsf{H} \end{array} + 2[\mathsf{Ag}(\mathsf{NH}_3)_2]^+ + 3\mathsf{OH}^- \longrightarrow \begin{array}{c} \widehat{\mathsf{R}}-\widehat{\mathsf{C}}' \\ O^- \end{array} + 2\mathsf{Ag} + 4\mathsf{NH}_3 + 2\mathsf{H}_2\mathsf{O} \\ O^- \\ \overset{\text{Gaustieff}}{\overset{Gaustieff}}{\overset{Gaustieff}}{\overset{Gaustieff}}}}}}} + 2\mathsf{Gaustief} + 2\mathsf{Gaustief}} + 2\mathsf{Gaustief} + 2\mathsf{Gaustief} + 2\mathsf{Gaustief} + 2\mathsf{Gaustief}} + 2\mathsf{Gaustief} + 2\mathsf{Gaustief}} + 2\mathsf{Gaustief}} + 2\mathsf{Gaustief}} + 2\mathsf{Gaustief}} + 2\mathsf{Gaustief} + 2\mathsf{Gaustief}} + 2\mathsf{Gaustief} + 2\mathsf{Gaustief}} + 2\mathsf{Gaustief}} + 2\mathsf{Gaustief} + 2\mathsf{Gaustief} + 2\mathsf{Gaustief}} + 2\mathsf{Gaustief} + 2\mathsf{Gaustief}$$

தொலனின் சோதனைப் பொருளினால் அலிடிகைட்டுக்களை ஒட்சியேற்றல் அல்லது வெள்ளி ஆடிப் பரிசோதனை அல்டிகைட்டுக்களையும் கீற்றோன்களையும் ஒன்றிலிருந்து ஒன்று வேறுபடுத்து வதற்குப் பயன்படுத்தப்படும்.

3.4.7.2 பீலிங்கின் (Fehling) கரைசலினால் ஒட்சீயேற்றல்.

NaOH நீர்க்கரைசலிலுள்ள கொப்பர் (II) தாத்தரேற்று கரைசலானது பீலிங்கின் கரைசல் என்று அறியப்படும். இது கடும் நீலக்கரைசலாகும். இச் சோதனைப் பொருளினுள் சில துளிகள் அலிடிகைட்டைச் சேர்த்து வெப்பமேற்றும்போது, கரைசலின் நீலநிறம் படிப்படியாக அகற்றப்பட்டு, செங்கட்டிச் சிவப்பு நிற குப்பிரஸ் ஒட்சைட்டு வீழ்படிவு உண்டாகும்.

அலிடிகைட்டுக்கள் மற்றும் கீற்றோன்கள் என்பனவற்றை பீலிங்கின் கரைசலுடன் தாக்கமடைய விடுதனால் ஒன்றிலிருந்து ஒன்றை வேறுபடுத்தலாம்.

3.4.7.3 அமிலமாக்கப்பட்ட பொற்றாசியம் இருகுரோமேற்று அல்லது அமிலமாக்கப்பட்ட குரோமிக் ஒட்சைட்டு அல்லது அமிலமாக்கப்பட்ட பொற்றாசியம் பரமங்கனேற்று இனால் ஒட்சியேற்றல்.

அலிடிகைட்டுக்களை ஒட்சியேற்றும் கருவிகளான அமில பொற்றாசியம் இருகுரோமேற்று அல்லது அமில குரோமிக் ஒட்சைட்டு அல்லது அமில பொற்றாசியம் பரமங்கனேற்று உடன் தாக்கமடைய விடுவதால், அவை அதே காபன் எண்ணிக்கையுடைய காபொட்சிலிக் அமிலங்களாக ஒட்சியேற்றப் படும்.

$$R = C_{H}^{0} \qquad \xrightarrow{H^{+}/KMnO_{4}} \qquad R = C_{OH}^{0} \qquad + \qquad Mn^{2+}$$

$$R = C_{H}^{0} \qquad \xrightarrow{H^{+}/K_{2}Cr_{2}O_{7}} \qquad R = C_{OH}^{0} \qquad + \qquad Cr^{3+}$$

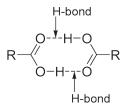
$$R = C_{H}^{0} \qquad \xrightarrow{H^{+}/K_{2}Cr_{2}O_{7}} \qquad R = C_{OH}^{0} \qquad + \qquad Cr^{3+}$$

அலிடிகைட்டு முன்னிலையில் H⁺/ KMnO₄ இன் மென்சிவப்பு நிறம் நிறமற்றதாக மாறும். ஆயினும் H⁺/ Cr₂O₇²⁻ இன் செம்மஞ்சள் நிறம் பச்சை நிறமாக மாறும். இச் சோதனைப் பொருட்களைப் பயன்படுத்தி அலிடிகைட்டுக்களையும் கீற்றோன்களையும் ஒன்றிலிருந்து ஒன்று வேறுபடுத்தலாம்.

கீற்றோன்கள், C=O கூட்டத்திற்கு இணைக்கப்பட்ட H அணுவைப் கொண்டிருக்காதபடியால், அவை இவ் ஒட்சியேற்றும் கருவிகளுடன் ஒட்சியேற்றத்திற்கு உட்படமாட்டாதன.

ஆயினும் கீற்றோன்களை வன் ஒட்சியேற்றும் கருவிகள் போன்ற பொற்றாசியம் பரமங்கனேற்றுடன் வெப்பமேற்றும்போது ஒட்சியேற்றப்படலாம். இவ் ஒட்சியேற்றத்தின்போது காபன் - காபன் பிணைப்பு உடைவதன் விளைவாக கீற்றோன் பிளவு அடையும்.

3.5 காபொட்சிலிக் அமிலங்களின் கட்டமைப்புக்கள், இயல்புகள், தாக்கங்கள்


C=O மற்றும் OH கூட்டங்களைக் கொண்டிருக்கின்ற காபொட்சில் (COOH) கூட்டத்தை உடைய சேர்வைகள் காபொட்சிலிக் அமிலங்களாகும் (உரு 3.4). OH கூட்டங்களையுடைய வேறு சேதனச் சேர்வைகளிலும் பார்க்கக் காபொட்சிலிக் அமிலங்கள் பொதுவாக அமிலத்தன்மை கூடியவையாகும். ஆனால் சாதாரண கனிப்பொருள் அமிலங்களிலும் மென்மையானவை.

உரு 3.4 காபொட்சில் கூட்டத்தின் கட்டமைப்பு

3.5.1 பௌதீக இயல்புகள்

காபொட்சில் கூட்டமானது முனைவுத் தன்மையுடைய தொழிற்படும் கூட்டமாகும். C=O மற்றும் OH கூட்டங்களின் முனைவாக்கத்தினால், இவை மூலக்கூறுகளுக்கிடையே ஐதரசன் பிணைப்புக் களை உருவாக்குகின்றன. காபொட்சிலிக் அமிலங்கள் இரு பகுதிய கட்டமைப்புக்களை உருவாக்கக் கூடியன. இதில் காபொட்சிலிக் அமில மூலக்கூறுகள் ஐதரசன் பிணைப்புக்களால் சோடிகளாக இணைக்கப்பட்டுள்ளது (உரு 3.5).

உரு 3.5 H - பிணைப்பால் காபொட்சிலிக் அமிலங்களின் இரு பகுதியக் கட்டமைப்பு

இக் காரணங்களினால் காபொட்சிலிக் அமிலங்கள், அவற்றை ஒத்த சார் மூலக்கூற்றுத்திணிவுடைய அற்ககோல்கள், அல்டிகைட்டுக்கள் மற்றும் கீற்றோன்கள் என்பவற்றிலும் பார்க்க உயர் கொதிநிலை களைக் காட்டக்கூடியன (அட்டவணை 3.4).

க.பொ.த. (உ/த) இரசாயனம்: அலகு 9	பொ.க. (ஓ	உ/க) (இரசாயனம்:	அலக	9
--------------------------------	----------	--------	-----------	-----	---

ஒட்சிசனைக் கொண்டுள்ள சேதனச் சேர்வைகள்

அட்டவணை 3.4 மூலக்கூற்றுத் திணிவுகளையுடைய சில ஒத்த சார் காபொட்சிலிக் அமிலங்கள், அற்ககோல்கள், அல்டிகைட்டுக்கள், கீற்றோன்கள் என்பன வற்றின் கொதிநிலைகள்.

சேர்வை	கட்டமைப்புச் சூத்திரம்	சார்மூலக்கூற்றுத் திணிவு	கொதிநிலை /⁰C
மெதனொயிக் அமிலம்	HCO ₂ H	46	100
எதனோல்	CH ₃ CH ₂ OH	46	78
எதனல்	CH ₃ CHO	44	20
எதனொயிக் அமிலம்	CH ₃ COOH	60	118
1-புரொப்பனோல்	CH ₃ CH ₂ CH ₂ OH	60	97
2-புரொப்பனோல்	(CH ₃) ₂ CHOH	60	83
புரொப்பனல்	CH ₃ CH ₂ CHO	58	49
புரொப்பனோன்	$(CH_3)_2C=O$	58	56
புரொப்பனொயிக் அமிலம்	CH ₃ CH ₂ CO ₂ H	74	141
1-பியூற்றனோல்	CH ₃ CH ₂ CH ₂ CH ₂ OH	74	118
2-பியூற்றனோல்	CH ₃ CH(OH)CH ₂ CH ₃	74	99
பியூற்றனல்	CH ₃ CH ₂ CH ₂ CHO	72	75
பியூற்றனோன்	CH ₃ COCH ₂ CH ₃	72	80

காபொட்சில் கூட்டமானது நீருடன் H - பிணைப்புக்களை ஏற்படுத்தக்கூடியது. எனவே C தொடக்கம் C₄ வரையிலான காபொட்சிலிக் அமிலங்கள் நீரில் நன்றாகக் கரைவன. காபன் அணுக்களின் எண்ணிக்கை அதிகரிக்கும்போது காபொட்சிலிக் அமிலங்களின் கரைதிறன் குறைகின்றன. அரோமற்றிக் காபொட்சிலிக் அமிலங்கள் நீரில் கரையாதன. மற்றும் திண்மப் பளிங்குப் பதார்த்தங்களாக உள்ளன. அனேகமாக எல்லா காபொட்சிலிக் அமிலங்களும் சேதன கரைப்பான்களில் கரைகின்றன.

3.5.2 - COOH கூட்டத்தின் தாக்குதிறன் வகைகளை / மாதிரிகளை அலிடிகைட்டுக்கள், கீற்றோன்கள் என்பனவற்றீன் >C=O கூட்டத்துடனும் மற்றும் அற்ககோல்கள், பீனோல்கள் என்பனவற்றின் - OH கூட்டத்துடனும் ஒப்பீடுதல்.

காபொட்சிலிக் அமிலத்தின் -OH கூட்டமும் அற்ககோல்கள், மாதிரி C - O பிணைப்பு மற்றும் O - H பிணைப்பு இரண்டும் பிளவுபடுதலுடன் சம்பந்தப்படும் தாக்கங்களில் ஈடுபடக்கூடியது.

ஒட்சிசனைக் கொண்டுள்ள சேதனச் சேர்வைகள்

3.5.2.1 O-H பீணைப்பு பீளவுபடுதலுடன் ஈடுபடும் தாக்கங்கள்

காபொட்சிலிக் அமிலங்கள் அமிலத்தன்மையானவை. எனவே அவை கார உலோகங்களான சோடியம், பொற்றாசியம், காரங்களான NaOH, KOH மற்றும் மூலங்களான Na₂CO₃, NaHCO₃ என்பனவற்றுடன் தாக்கமடையும்.

$$2 \operatorname{RCOOH} + 2 \operatorname{Na} \longrightarrow 2 \operatorname{RCOO}^{-}\operatorname{Na}^{+} + \operatorname{H}_{2}$$

$$\operatorname{RCOOH} + \operatorname{NaOH} \longrightarrow \operatorname{RCOO}^{-}\operatorname{Na}^{+} + \operatorname{H}_{2}\operatorname{O}$$

$$2 \operatorname{RCOOH} + \operatorname{Na}_{2}\operatorname{CO}_{3} \longrightarrow 2 \operatorname{RCOO}^{-}\operatorname{Na}^{+} + \operatorname{CO}_{2} + \operatorname{H}_{2}\operatorname{O}$$

$$\operatorname{RCOOH} + \operatorname{NaHCO}_{3} \longrightarrow \operatorname{RCOO}^{-}\operatorname{Na}^{+} + \operatorname{CO}_{2} + \operatorname{H}_{2}\operatorname{O}$$

அற்ககோல்கள், பீனோல்கள், காபொட்சிலிக் அமிலங்கள் என்பனவற்றுடன் சோடியம், சோடியம் ஐதரொட்சைட்டு, சோடியம் காபனேற்று, சோடியம் இருகாபனேற்று என்பனவற்றின் தாக்கங்களை ஒப்பிடுதல். அட்டவணை 3.5 இல் கொடுக்கப்பட்டுள்ளது.

அட்டவணை 3.5 அற்ககோல்கள், பீனோல்கள், காபொட்சிலிக் அமிலங்கள் என்பனவற்றுடன் சோடியம், சோடியம் ஐதரொட்சைட்டு, சோடியம் காபனேற்று, சோடியம் இருகாபனேற்று இனது தாக்கங்கள்.

R-C RCOO ⁻ Na ⁺ நீர்க்கரைசல் RCOO ⁻ Na ⁺ நீர்க்கரைசல் Na ₂ CO ₃ (aq) அல்லத வருவாகும். உருவாகும். உருவாகும். NaHCO ₃ (aq) இல்		தாக்	கங்கள்	
H RO· Na ⁺ உருவாகும். NaO· Na ⁺ உருவாகும். NaOH (aq) இல் கரையும். தாக்கமில்லை C-H H₂ வாயு வெளியேறும். NaOH (aq) இல் கரையும். தாக்கமில்லை C ₆ H₅O· Na ⁺ உருவாகும். C ₆ H₅O· Na ⁺ ௺jtšaகரைசல் தாக்கமில்லை P H₂ வாயு வெளியேறும். NaOH (aq) இல் கரையும். CO₂ வாயு வெளியேறும். R-C H₂ வாயு வெளியேறும். NaOH (aq) இல் கரையும். CO₂ வாயு வெளியேறு R-C H₂ வாயு வெளியேறும். NaOH (aq) இல் கரையும். CO₂ வாயு வெளியேறு R-C H₂ வாயு வெளியேறும். NaOH (aq) இல் கரையும். CO₂ வாயு வெளியேறு R-C RCOO· Na ⁺ ௺jtšaகரைசல் Na ₂ CO₃ (aq) அல்லத Na ₂ CO₃ (aq) இல் உருவாகும். உருவாகும். NaHCO₃(aq) இல்	சேர்வை	உலோக Na	NaOH (aq)	
ப்பில் கிறு பில்லது பில்லு பிலு பில்லது பில்லது பில்லது பில்லது ப	A CONTRACTOR OF	2	தாக்கமில்லை	தாக்கமில்லை
R-C RCOO ⁻ Na ⁺ நீர்க்கரைசல் RCOO ⁻ Na ⁺ நீர்க்கரைசல் Na ₂ CO ₃ (aq) அல்லத உருவாகும். உருவாகும். உருவாகும். NaHCO ₃ (aq) இல்	О-н	2	$\mathrm{C_6H_5O^+Na^+}$ நீர்க்கரைசல்	தாக்கமில்லை
	0 R-C 0-H	RCOO Na⁺ நீர்க்கரைசல்	RCOO Na⁺ நீர்க்கரைசல்	CO_2 வாயு வெளியேறும். $\operatorname{Na}_2\operatorname{CO}_3(aq)$ அல்லது $\operatorname{NaHCO}_3(aq)$ இல் கரைந்து $\operatorname{RCOO}^2\operatorname{Na}^+$ நீர்க்கரைசல் உருவாகும்.

இதிலிருந்து அற்ககோல்கள், பீனோல்கள் மற்றும் காபொட்சிலிக் அமிலங்களினது அமில வலிமைகளின் வேறுபாடு பின்வருமாறு:

அற்ககோல்கள் < பீனோல்கள் < காபொட்சிலிக் அமிலங்கள்

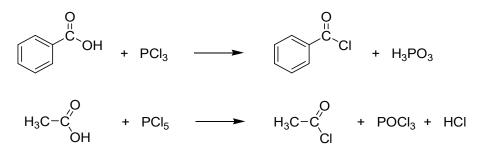
காபொட்சிலிக் அமிலங்கள் நீர் ஊடகத்தில் பின்வருமாறு சமநிலையில் உள்ளன.

$$\begin{array}{c} O \\ R-C'_{1} + H_{2}O \end{array} \xrightarrow{O} R-C'_{1} + H_{3}O^{+} \\ O-H \end{array}$$

மேலே உள்ள சமநிலையின் சமநிலைப் புள்ளியானது பீனோல்களினால் அடையப்படும் ஒத்த சமநிலை சார்பாகக் கூடுதலாக வலது பக்கம் நோக்கி நகர்த்தப்படும். காபொட்சிலேற் அயன் காபொட்சிலிக் அமிலம் சார்பாக உறுதியாக்கப்படுவது பீனேற் அயன் பீனோல் சார்பாக உறுதி யாக்கப்படுவதிலும் கூடவாகும். பீனொக்சைட் அயன், பீனோல்கள் (உரு 3.2) மாதிரி காபொட்சிலேற் அயன், காபொட்சிலிக் அமிலம் இரண்டும் பரிவால் உறுதியாக்கப்படுகின்றன (உரு 3.6).

காபொட்சிலிக் அமிலத்தின் பரிவுக் கட்டமைப்புக்கள்

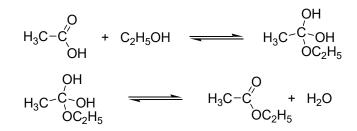
காபொட்சிலேற் அனயனின் பரிவுக் கட்டமைப்புக்கள்


உரு 3.6 காபொட்சிலிக் அமிலம் காபொட்சிலேற் அனயன் என்பனவற்றின் பரிவுக் கட்டமைப்புக்கள்

காபொட்சிலேற் அனயன் பரிவால் உறுதியாக்கப்படுவது காபொட்சிலிக் அமிலம் பரிவால் உறுதி யாக்கப்படுவதிலும் கூடவாகும். ஏனெனில் அமிலம் மாதிரி அல்லாமல் அனயனின் பரிவுக் கட்டமைப்புக்களில் ஏற்றப்பிரிவு இல்லை என்பதாலாகும் (உரு 3.6).

பீனெக்சைட் அயனில் ஒட்சிசன் மற்றும் காபன் அணுக்களின் எதிரேற்றம் ஓரிடப்பாடற்றுக் காணப்படுவது போலல்லாது, இரு சமமான மின்னெதிர்த்தன்மை உடைய ஒட்சிசன் அணுக்களுக் கிடையே எதிரேற்றம் ஓரிடப்பாடற்றுக் காபொட்சிலேற் அயன் உறுதியாக்கப்படுவதால் காபொட்சிலிக் அமிலம் உயர் அமிலத்தன்மை உடையது என்னும் உண்மையை விளக்கலாம்.

3.5.2.2 C-O பீணைப்பு பீளவுபடுதலுடன் ஈடுபடும் தாக்கங்கள்


(அ) காபொட்சிலிக் அமிலங்கள் PCl₃ அல்லது PCl₅ உடன் தாக்கமடைந்து அதே காபன் எண்ணிக்கையுடைய காபொட்சிலிக் அமில குளோரைட்டுக்களைக் கொடுக்கின்றன.

(ஆ) அற்ககோல்களுடன் தாக்கங்கள்

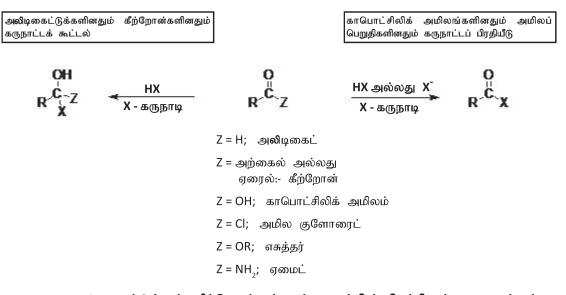
காபொட்சிலிக் அமிலங்கள் அற்ககோல்களுடன் அமில ஊக்கி முன்னிலையில் தாக்கமடைந்து எசுத்தர்களைக் கொடுக்கின்றன.

ஆயினும் மேலே உள்ள தாக்கமானது எளிய கருநாட்டப் பிரதியீட்டுத் தாக்கம் போல் தோன்றினாலும் (OH, OC, H, இனால் பிரதியீடு செய்யப்படல்) உண்மையாக முதலில் C, H, OH மூலக்கூறானது C=O இற்கு குறுக்கே கருநாட்டக் கூட்டலில் ஈடுபட்டு நான்முகிக்குரிய இடைநிலை யைக் கொடுக்கும். தாக்கத்தின் அமில நிபந்தனைகளின் கீழ் இவ் இடைநிலை மூலக்கூறு இழந்து எசுத்தரைக் கொடுக்கும்.

தயவுசெய்து பகுதி 3.6 இலுள்ள கலந்துரையாடலைப் பார்க்கவும். குறிப்பு:

3.5.2.3 LiAlH₄ உடன் காபொட்சிலிக் அமிலங்களின் தாழ்த்தல்

காபொட்சிலிக் அமிலங்கள் வன் / சக்திவாய்ந்த தாழ்த்தும் கருவியான LiAlH₄ உடன் தாக்க மடைந்து அற்ககோல்களைக் கொடுக்கும். காபொட்சிலிக் அமிலங்களும் மற்றும் அவற்றின் அமிலப் பெறுதிகளும் LiAlH₄ இலும் வன்மை குறைந்த தாழ்த்தும் கருவியான NaBH₄ இனால் தாழ்த்தலுக்குட்படாது என்பதைக் குறிக்கவும்.


$$CH_{3}CH_{2}-C_{OH}^{\prime 0} \qquad \frac{1. \text{ LiAIH}_{4}}{2. \text{ H}^{+}/\text{H}_{2}O} \qquad CH_{3}CH_{2}-CH_{2}OH$$

$$O_{H}^{\prime 0} \qquad \frac{1. \text{ LiAIH}_{4}}{2. \text{ H}^{+}/\text{H}_{2}O} \qquad CH_{2}OH$$

ஒட்சிசனைக் கொண்டுள்ள சேதனச் சேர்வைகள்

3.6 காபொட்சிலிக் அமிலப் பெறுதிகளின் தாக்கங்கள்

காபொட்சிலிக் அமிலப் பெறுதிகளினதும் மற்றும் காபொட்சிலிக் அமிலங்களினதும் தாக்கங்களை அதை ஒத்த அ**லி**டிகைட்டுக்கள், கீற்றோன்கள் என்பனவற்றின் தாக்கங்களுடன் ஒப்பிடுமாறு அறிவுறுத்தப்பட்டுள்ளது.

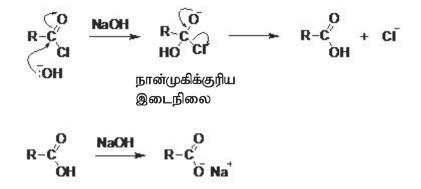
உரு 3.7 அலிடிகைட்டுக்கள், கீற்றோன்கள் என்பனவற்றின் சிறப்பியல்பான தாக்கங்களை அதை ஒத்த காபொட்சிலிக் அமிலங்கள், அவற்றின் பெறுதிகள் என்பனவற்றின் தாக்கங்களுடன் ஒப்பிடுதல்.

அலிடிகைட்டுக்கள், கீற்றோன்கள் என்பனவற்றின் தாக்கங்களின் முக்கிய வேறுபாடு மாறுபட்டது. காபொட்சிலிக் அமிலப் பெறுதிகள், காபொட்சிலிக் அமிலங்கள் என்பனவற்றிலுள்ள Z கூட்டமானது வெளியேறும் கூட்டமாகத் தொழிற்படுகின்றது. அதாவது C - Z பிணைப்பின் பல்லினப் பகுப்பிற்குரிய பிளவு சம்பந்தப்படும் தாக்கங்களில் Z ஆனது பிணைப்பிலுள்ள ஒரு சோடி இலத்திரன்களுடன் வெளியேறும்.

காபொட்சிலிக் அமிலங்களையும், அமிலப்பெறுதிகளையும் எடுத்தால் தாக்கத்தின் முதல் படி, கருநாடியானது அமிலங்கள், அமிலப் பெறுதிகள் என்பனவற்றின் காபனைல் காபனைத் தாக்கி, காபன், ஒட்சிசன் π - பிணைப்பை உடைத்து நான்முகிக்குரிய இடைநிலையைக் கொடுப்பதாகும். இதனைத் தொடர்ந்து Z ஆனது கார அல்லது நடுநிலை நிபந்தனைகளில் Z⁻ ஆகவும் அமில நிபந்தனைகளில் ZH ஆகவும் இழக்கப்படுவதால் காபன், ஒட்சிசன் இரட்டைப் பிணைப்பு மீள உருவாக்கப்படும்.

இவ்வாறாக காபன் அணு முக்கோண கேத்திர கணித வடிவத்தை (தள முக்கோணி கேத்திர கணித வடிவம்) மீண்டும் அடையும். பூரண தாக்கத்தில் கருநாடியினால் Z பிரதியிடப்படும். அலிடிகைட்டுக்கள், கீற்றோன்கள் என்பனவற்றின் H, அற்கைல், ஏரைல் தொகுதிகள் வெளியேறும் தொகுதிகளாக நடந்து கொள்ள முடியாதாகையால், இத்தாக்கப் பாதை கிடைக்கப் பெறமாட்டாது.

85


3.6.1 அமில குளோரைட்டுக்களின் தாக்கங்கள்

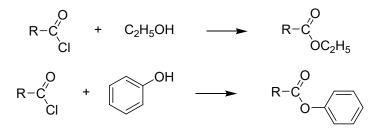
3.6.1.1 சோடியம் ஐதரொட்சைட்டு நீர்க்கரைசலுடன் தாக்கம்

அமில குளோரைட்டுக்கள் சோடியம் ஐதரொட்சைட்டு நீர்க்கரைசலுடன் தாக்கமடைந்து அதை ஒத்த காபொட்சிலிக் அமிலங்களைக் கொடுக்கும். இது மேலதிக NaOH உடன் தாக்கமடைந்து அவற்றின் சோடியம் உப்பைக் கொடுக்கும்.

$$\begin{array}{cccc} & & & & \\ R - C & & & \\ CI & & & \\ \end{array} \xrightarrow{O} & & R - C & & \\ & & & OH & \\ \end{array} \xrightarrow{O} & & R - C & \\ & & & OH & \\ & & & O & Na^{+} \end{array}$$

இத்தாக்கத்தின் பொறிமுறை பின்வருமாறு:

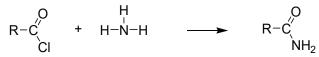
மேலுள்ள தாக்கத்தில் OH கருநாடியாகும் மற்றும் Cl வெளியேறும் தொகுதியாகும்.

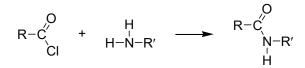

3.6.1.2 நீருடன் தாக்கம்

அமில குளோரைட்டுக்கள் நீருடன் மேலேயுள்ள தாக்கப் பொறிமுறை மாதிரித் தாக்கமடைந்து அதை ஒத்த காபொட்சிலிக் அமிலங்களைக் கொடுக்கும்.

$$\begin{array}{ccc} 0 & \frac{H_2O}{R-C} & 0 \\ CI & & R-C & + HCI \\ \end{array}$$

3.6.1.3 அற்ககோல்கள், பீனோல்கள் என்பனவற்றுடன் தாக்கம்


அமில குளோரைட்டுக்கள் அற்ககோல்கள், பீனோல்கள் என்பனவற்றுடன் தாக்கமடைந்து முறையே அற்கைல் எசுத்தர்கள், பீனைல் எசுத்தர்கள் என்பனவற்றை உண்டாக்குகின்றன.


க.பொ.த. (உ/த) இரசாயனம்: அலகு 9 🕴 ஒட்சிசனைக் கொண்டுள்ள சேதனச் சேர்வைகள்

3.6.1.4 அமோனியா மந்நும் முதல் அமைன்கள் என்பனவந்நுடன் தாக்கங்கள்

அமில குளோரைட்டுக்கள் அமோயாவுடன் தாக்கமடைந்து முதல் ஏமைட்டுக்களை உண்டாக்கு கின்றன.

அமில குளோரைட்டுக்கள் முதல் அமைன்களுடன் தாக்கமடைந்து வழி ஏமைட்டுக்களை உண்டாக்குகின்றன.

குறிப்பு: ஏமைட்டுக்களில் இரு H அணுக்கள் N அணுவிற்கு இணைக்கப்படும் பொழுது முதல் ஏமைட்டுக்கள் என வகைப்படுத்தப்பட்டுள்ளது. முதல் ஏமைட்டுக்களில் H அணுவானது அற்கைன் தொகுதியினால் பிரதியீடு செய்யப்படும் பொழுது, இது வழி ஏமைட்டுக்களாகவும் மற்றும் இரு Н அணுக்களும் இரு அற்கைல் தொகுதிகளினால் பிரதியீடு செய்யப்படும் பொழுது, இது புடை ஏமைட்டுக்களாகவும் வகைப்படுத்தப்பட்டுள்ளது.

3.6.2 எசுத்தர்களின் தாக்கங்கள்

3.6.2.1 ஐதான கனிப்பொருள் அமிலங்களுடன் தாக்கங்கள்

எசுத்தர்கள் ஐதான கனிப்பொருள் அமிலங்களுடன் தாக்கமடைந்து அதை ஒத்த காபொட்சிலிக் அமிலங்களையும் அற்ககோல்களையும் விளைவுகளாகக் கொடுக்கின்றன. இத் தாக்கத்தில் நீர் கருநாடியாகத் தொழிற்படுகின்றது. மற்றும் எசுத்தர்கள் நீர்ப்பகுப்பிற்குள்ளாகின்றன. இத் தாக்கம் பகுதி 3.5.2.2 (b) இல் கொடுக்கப்பட்டுள்ளவாறு எசுத்தர்கள் உருவாகும்போது சம்பந்தப்படும் அதே நான்முகிக்குரிய இடைநிலை ஊடாகச் செல்கிறது.

$$R = C'_{OC_2H_5} + H_2O \xrightarrow{H^+} R = C'_{OH} + C_2H_5OH$$

3.6.2.2 NaOH நீர்க்கரைசலுடன் தாக்கம்

எசுத்தர்கள் NaOH நீர்க்கரைசலுடன் தாக்கமடையும் பொழுது அதை ஒத்த காபொட்சிலிக் அமிலங்களின் சோடியம் உப்புக்களையும் அற்ககோல்களையும் உண்டாக்குகின்றன. இத் தாக்கத்தின் பொறிமுறையானது அமில குளோரைட்டுக்களிற்கும் NaOH இற்குமான தாக்கப் பொறிமுறையை (பகுதி 3.6.1.1) ஒத்ததாக உள்ளது.

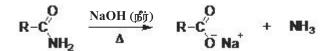
$$R = C' \qquad \qquad NaOH \qquad O \qquad \qquad O \qquad \qquad R = C' \qquad + C_2H_5OH \qquad \qquad O \qquad Na^+ \qquad \qquad O \qquad Na^+$$

3.6.2.3 கிரீனாட்டின் சோதனைப் பொருளுடன் தாக்கம்

எசுத்தர்கள் கிரினாட்டின் சோதனைப் பொருட்களுடன் புடை அற்ககோல்களைக் கொடுக்கின்றன. இத்தாக்கத்தில் எசுத்தரானது முதலில் கீற்றோனாக மாற்றப்படும். பின்பு இது உடனடியாக மீண்டும் கிரினாட்டின் சோதனைப் பொருளுடன் தாக்கமடையும். விளைவை நீர்ப்பகுக்கும்போது புடை அற்ககோல் விளைவாகப் பெறப்படும்.

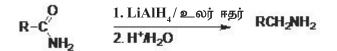
$$R = C \xrightarrow{O} CH_3MgBr \xrightarrow{O} R = C \xrightarrow{O} CH_3MgBr \xrightarrow{O} R = C \xrightarrow{O} CH_3MgBr \xrightarrow{O} R = C \xrightarrow{O} CH_3 \xrightarrow{O} R = C \xrightarrow{O} C \xrightarrow{O} R = C \xrightarrow{O} C \xrightarrow{O} CH_3 \xrightarrow{O} R = C \xrightarrow{O} C \xrightarrow{O} R = C \xrightarrow{O} R = C \xrightarrow{O} C \xrightarrow{O} R = C \xrightarrow{O} C \xrightarrow{O} R = C \xrightarrow{$$

கீற்றோன்கள் கிரினாட்டின் சோதனைப் பொருளுடன் எசுத்தர்களிலும் விரைவாகத் தாக்க மடைவதால், இத்தாக்கத்தை கீற்றோன் நிலையில் நிற்பாட்டுவது சாதகமானதல்ல என்பதைக் குறிப்பிடவும்.


3.6.2.4 LiAlH₄ ஆல் தாழ்த்தல்

எசுத்தர்கள் LiAlH₄ உடன் தாக்கமடையும். மற்றும் தாழ்த்தலுக்குட்பட்டு அற்ககோல்களைக் கொடுக்கும்.

3.6.3 ஏமைட்டுக்களின் தாக்கங்கள்


3.6.3.1 சோடியம் ஐதரொட்சைட்டு நீர்க்கரைசலுடன் தாக்கம்

ஏமைட்டுக்களை NaOH நீர்க்கரைசலுடன் சூடாக்கும்போது NH₃ வாயு வெளியேற்றத்துடன் அவற்றை ஒத்த காபொட்சிலிக் அமிலங்களின் சோடியம் உப்புக்களையும் கொடுக்கின்றன.

3.6.3.2 LiAlH₄ உடன் தாழ்த்தல்

முதல் ஏமைட்டுக்கள் LiAlH₄ உடன் அவற்றை ஒத்த முதல் அமைன்களாகத் தாழ்த்தப்படுகின்றன.

90

4. நைதரசன் உடைய சேதனச் சேர்வைகள்

உள்ளடக்கம்

- 4.1 முதல் அமைன்கள் அனிலீன் என்பவற்றின் கட்டமைப்பு இயல்புகள், தாக்கங்கள்
 - 4.1.1 அமைன்களின் பாகுபாடு
 - 4.1.2 அனிலீனின் பென்சீன் வளையத்தின் தாக்குதிறன்
 - 4.1.3 முதல் அமைன்களின் தாக்கங்கள்
 - 4.1.3.1 அற்கைல் ஏலைட்டுகளுடன் அமைன்களின் தாக்கங்கள்
 - 4.1.3.2 அல்டீகைட்டுகள், கீற்றோன்கள் ஆகியவற்றுடன் அமைன்களின் தாக்கங்கள்
 - 4.1.3.3 அமிலக் குளோரைட்டுகள் உடன் அமைன்களின் தாக்கங்கள்
 - 4.1.3.4 நைதரஸ் அமிலத்துடன் (NaNO₂/HCl) அமைன்களின் தாக்கம்

4.2 அமைன்களின் மூலத்தன்மை

- 4.2.1 அல்ககோல்களின் ஒப்பிடுகையில் அமைன்களின் மூலத்தன்மை
- 4.2.2 அலிபற்றிக் முதல் அமைன்கள், அனிலீன் ஆகியவற்றின் மூலத்தன்மை
- 4.2.3 அமைன்களின் மூலவியல்பை ஏமைட்டுக்களுடன் ஒப்பிடல்

4.3 அரோமற்றிக் ஈரசோனியம் உப்புகளின் தாக்கங்கள்

- 4.3.1 ஈரசோனியம் கூட்டம் வேறு அணுவினால் அல்லது ஒரு கூட்டத்தினால் பிரதியிடப்படும் தாக்கங்கள்
 - 4.3.1.1 நீருடன் ஈரசோனியம் உப்புக்களின் தாக்கம்
 - 4.3.1.2 உபபொசுபரசு அமிலத்துடன் (H₃PO₂)

ஈரசோனியம் உப்புகளின் தாக்கம்

- 4.3.1.3 CuCl, CuBr என்பவற்றுடன் ஈரசோனியம் உப்புகளின் தாக்கம்
- 4.3.1.4 CuCN உடன் ஈரசோனியம் உப்புகளின் தாக்கம்
- 4.3.1.5 KI உடன் ஈரசோனியம் உப்புகளின் தாக்கம்
- 4.3.2 ஈரசோனியம் அயன் இலத்திரன் நாடியாகத் தொழிற்படும் தாக்கங்கள்

அறீமுகம்

N உடைய பொதுவான சேதனச் சேர்வைகள், அமீன்கள், ஏமைட்டுகளை உள்ளடக்கும். ஏமைட்டுகளின் தாக்கங்கள் காபொட்சிலிக் அமிலப் பெறுமதிகளின் கீழ் கலந்துரையாடப்பட்டுள்ளது. காரணம் காபொட்சிலிக் அமிலப் பெறுதிகள் யாவற்றிலும் ஏசைல் கூட்டம் பொதுவாக உள்ளது. இவ்வலகில் அமைன்களின் இயல்புகள், தாக்கங்கள் அவற்றின் கட்டமைப்புத் தொடர்பாகக் கலந்துரையாடப்படும். அமோனியாவிலுள்ள ஐதரசன் அணுக்களுக்குப் பதிலாக அற்கைல் அல்லது ஏரைல் கூட்டங்கள் நைதரசனுடன் இணைந்துள்ள சேர்வைகளாக அமைன்களை வரையறுக்கலாம்.

4.1 முதல் அமைன்கள், அனிலீன் என்பவழ்ழின் கட்டமைப்பு, இயல்புகள், தாக்கங்கள்

4.1.1 அமைன்களின் பாகுபாடு

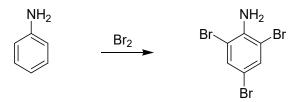
அற்கைல் ஏலைட்டுகள், அற்ககோல்கள் போலன்றி அமைன்கள் நைதரசன் அணுவுடன் இணைந்துள்ள அற்கைல் அல்லது ஏரைல் கூட்டங்களின் எண்ணிக்கைக்கேற்ப முதல், வழி, புடை அமைன்களாகப் பாகுபடுத்தப்பட்டுள்ளன. அமோனியாவிலுள்ள மூன்று ஐதரசன் அணுக்களில் ஒரு ஐதரசன் அணுவிற்குப் பதிலாக ஒரு அற்கைல் அல்லது ஏரைல் கூட்டம் இணைந்துள்ள சேர்வைகள் முதல் அமைன்கள் என அழைக்கப்படும். அமோனியாவில் இரு ஐதரசன் அணுக் களுக்குப் பதிலாக இரு கூட்டங்கள் ஒவ்வொன்றும் அற்கைல் அல்லது ஏரைல் கூட்டமாக இணைக்கப்படும் பொழுது உள்ள சேர்வைகள் வழி அமைன்கள் என அழைக்கப்படும். மூன்று ஐதரசன் அணுக்களுக்குப் பதிலாக இவ்வாறான மூன்று கூட்டங்கள் இணைக்கப்படும் பொழுது உள்ள சேர்வைகள் புடை அமைன்கள் என அழைக்கப்படும்.

$$\begin{array}{cccc} H & H & CH_3 \\ H_3C-N: & H_3C-N: & H_3C-N: \\ H & CH_3 & CH_3 \end{array}$$

methylamine மெதைல்அமைன் (முதல் அமைன்) dimethylamine இருமெதைல்அமைன் (வழி அமைன்)

trimethylamine மும்மெதைல்அமைன் (புடை அமைன்)

ஏரைல் கூட்டமாவது (அரோமற்றிக்கு வளையம்) நைதரசன் அணுவுடன் இணைந்த ஒரு சேர்வைகள் அரோமற்றிக் அமைன்கள் என அழைக்கப்படும். மிக எளிய அரோமற்றிக் அமைனில் NH, கூட்டம் பென்சீன் வளையத்துடன் இணைந்துள்ளது (அனிலீன்).

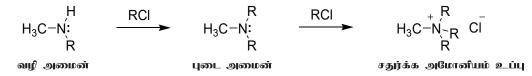


N-methylaniline N- மெதைல்அனிலீன் (வழி அரோமற்றிக் அமைன்)

4.1.2 அனிலீனின் பென்சீன் வளையத்தின் தாக்குதிறன்

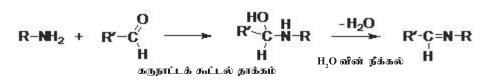
பீனோலைப்போல், அனிலீன் புரோமீனுடன் இலகுவில் தாக்கமுற்று 2, 4, 6- மூபுரோமோஅனிலீனைத் தரும். காரணம் -NH₂ கூட்டம் பென்சீன் வளையத்தை ஏவுகின்றது. இலத்திரன் நாட்டப் பிரதியீடு நிகழும். Br₂ நீருடன் இத்தாக்கத்தைச் செய்யும்பொழுது வெள்ளை நிற வீழ்படிவு 2, 4, 6 - மூபுரோமோஅனிலீன் நிற வீழ்படிவாக அவதானிக்கப்படும்.

4.1.3 முதல் அமைன்களின் தாக்கங்கள்


அமீன்களில் N அணு தனிச்சோடி இலத்திரன்களைக் கொண்டிருப்பதால் கருநாடிகளாக அமீன்கள் தொழிற்படலாம். பின்வருவன முதல் அமைன்கள் வேறுபட்ட சோதனைப் பொருட்களுடன் கருநாடியாகத் தொழிற்படும் சில தாக்கங்களாகும்.

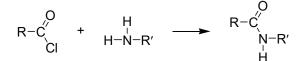
4.1.3.1 அந்கைல் ஏலைட்டுகளுடன் அமைன்களின் தாக்கம்

முதல் அமைன்கள் அற்கைல் ஏலைட்டுகளுடன் தாக்கமுற்று வழி அமைன்களைத் தரும்.


$$\begin{array}{ccc} H \\ CH_{3}NH_{2} \\ \hline H_{3}C-N \\ R \\ R \end{array}$$

இவ்வழி அமைன்களும் N அணுவில் தனிச்சோடி இலத்திரன்களைக் கொண்டிருப்பதனால் அற்கைல் ஏலைட்டுடன் மேலும் தாக்கமுற்றுப் புடைய அமைன்களை உருவாக்கலாம். புடை அமீனிலும் தனிச்சோடி இலத்திரன்கள் உள்ளதால், உருவாகும் புடை, அமீன் அற்கைல் ஏலைட்டுடன் மேலும் தாக்கமுற்று ஒரு சதுர்க்க (quaternars) அமோனியம் உப்பு உருவாகலாம்.

ஆகவே முதல் அமைனிற்கும் அற்கைல் ஏலைட்டுக்களிற்கும் இடையிலான தாக்கம் விளைவுகளின் ஒரு கலவையைத் தரும்.


4.1.3.2 அலீடிகைட்டுகள், கீற்றோன்கள் ஆகியவற்றுடன் அமைன்களின் தாக்கம் அலிடிகைட்டுகள், கீற்றோன்கள் ஆகியனவற்றுடன் அமைன்கள் கருநாட்டக் கூட்டல் தாக்கத்தைத் தொடர்ந்து நீக்கல் தாக்கதிலீடுபடும். விளைவுகள் இமீன்கள் (imines) என அழைக்கப்படும்.

இத்தாக்கம் 2, 4 - இரு நைத்திரோ பீனைல் ஐதரசீனுடன் (பிராடி சோதனைப்பொருள்) அ**லிடி**கைட்டுகள் கீற்றோன்களின் தாக்கத்தை ஒத்தது.

4.1.3.3 அமிலக் குளோரைட்டுகளுடன் அமைன்களின் தாக்கம்

முதல் அமைன்கள் அமிலக் குளோரைட்டுகளுடன் தாக்கமுற்று வழி ஏமைட்டுகளைத் தரும்.

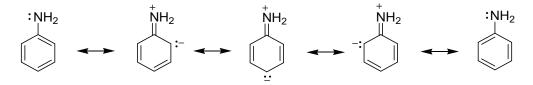
4.1.3.4 நைதரசு அமிலத்துடன் (NaNO₂/HCl) அமைன்களின் தாக்கம்

முதல் அமைன்கள் நைதரசு அமிலத்துடன் தாக்கமுற்று ஈரசோனியம் உப்புகளை உருவாக்கும். அற்கைல் ஈரசோனியம் உப்புகள் உறுதியற்றதால் அவை விரைவாக நைதரசன் வாயு வெளி யேற்றத்துடன் அற்ககோல்களாக மாற்றமடையும்.

அற்கைல் ஈரசோனியம் உப்புக்களிலும் பார்க்க, அரோமற்றிக் அமைன்களிலிருந்து உருவாகும் அரோமற்றிக் ஈரசோனியம் உப்புகள் கூடியளவு உறுதியுடையன. எனவே தாழ் வெப்பநிலைகளில் அரோமற்றிக் ஈரசோனியம் உப்புகளின் கரைசல்கள் பெறப்படலாம்.

4.2 அமைன்களின் மூலத்தன்மை

அலிபற்றிக்கு அமைன்கள் மூலவியல்புடையன. மூலத்திறன் அமோனியாவுடன் ஒப்பிடப்படக் கூடியது. கனிப்பொருள் அமிலங்களின் அல்லது காபொட்சிலிக் அமிலங்களின் நீர்க்கரைசல்கள் அமைன்களை அவற்றின் உப்புக்களாக மாற்றும். இவ்வுப்புகள் ஐதரொட்சைட்டு அயன்களுடன் உடனடியாகத் தாக்கமுற்று அமைன்களை மீண்டும் உருவாக்கும்.


$$R-NH_{2} + H_{3}O^{\dagger} \longrightarrow R-NH_{3} + H_{2}O$$
$$R-NH_{3} + OH \longrightarrow R-NH_{2} + H_{2}O$$

4.2.1 அந்ககோல்களுடன் ஒப்பிடுகையில் அமைன்களின் மூலத்தன்மை

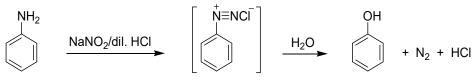
நைதரசனின் மின்னெதிர்த்தன்மை ஒட்சிசனிலும் தாழ்வு. எனவே நைதரசனிற்கு ஒட்சிசனிலும் பார்க்கத் தனிச்சோடி இலத்திரன்களை வழங்கும் ஆற்றல் உயர்வு. மறுபக்கமாக நைதரசனின் மின்னெதிர்த்தன்மை ஒட்சிசனிலும் குறைவாகவிருப்பதனால் நைதரசன் அணுவிற்கு நேரேற்றத்தைக் கொண்டிருக்கும் இயல்பு ஒட்சிசனிலும் இலகுவானது. ஆகவே அமைன் சார்பாக அற்கைல் அமோனியம் அயனின் உறுதித்தன்மை அற்ககோல் சார்பாக அற்கைல் ஒட்சோனியம் அயனின் உறுதித்தன்மையிலும் உயர்வு. எனவே அமைன்கள் அற்ககோல்களிலும் பார்க்கக் கூடியளவு மூலவியல்புடையது.

4.2.2 அலிபந்நீக்கு முதல் அமைன்கள், அனிலீன் ஆகியவந்நீன் மூலத்தன்மை

அலிபற்றிக்கு முதல் அமைன்கள் அனிலீனிலும் மூலவியல்பு கூடியன. அன்லீனில் நைதரசனிலுள்ள தனிச்சோடி இலத்திரன்கள் அரோமற்றிக்கு வளையத்தினுள் பரிவினால் ஓரிடப்பாடற்றதாகின்றன உரு 4.1).

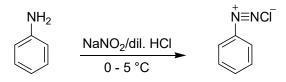
உரு 4.1 அனிலீனின் பரிவுக் கட்டமைப்புகள்

4.2.3 அமைன்களின் மூலவியல்பை ஏமைட்டுகளுடன் ஒப்பிடல்


ஏமைட்டுகள் அமைன்களிலும் மூலவியல்பு குறைவானவை. காரணம் ஏமைட்டு கூட்டத்தின் நைதரசனின் தனிச்சோடி இலத்திரன்கள் காபனைல் கூட்டத்தில் பரிவினால் ஓரிடப்பாடற்றவை யாகின்றன. ஆகவே அமீனிலுள்ள தனிச்சோடி இலத்திரன்களிலும் குறைவாகப் புரோத்தனை ஏற்கும் தன்மையுடையன (உரு 4.2).

உரு 4.2 ஏமைட்டின் பரிவுக் கட்டமைப்புகள்

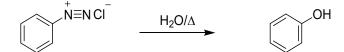
4.3 அரோமற்றிக்கு ஈரசோனியம் உப்புகளின் தாக்கங்கள்


அனிலீன் போன்ற அரோமற்றிக்கு அமைன்கள் நைதரசு அமிலத்துடன் (NaNO₂/HCl) தாக்கமுறும் போது, அரோமற்றிக்கு ஈரசோனியம் உப்புகள் உருவாகும். இவை அறைவெப்பநிலையில் பிரிகையடைந்து பீனோல்களைத் தரும்.

ஏரைல் ஈரசோனியம் குளோரைட்டு

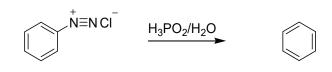
அரோமற்றிக்கு ஈரசோனியம் உப்புகள், அலிபற்றிக்கு ஈரசோனியம் உப்புகளிலும் கூடுதலான உறுதியுடையன. ஆகவே, இத்தாக்கத்தினை தாழ் வெப்பநிலைகளில் நிகழ்த்தும்போது அரோமற்றிக்கு ஈரசோனியம் உப்பு பீனோலாக மாற்றமடைதல் மெதுவாக்கப்படலாம், ஈரசோனியம் உப்பை வேறாக்கி எடுக்கலாம்.

எனவே அரோமற்றிக்கு ஈரசோனியம் உப்புகள், ஐதான HCl அல்லது ஐதான H₂SO₄ போன்ற கனிப்பொருள் அமிலத்தின் முன்னிலையில் NaNO₂ நீர்க்கரைசலுடன் அரோமற்றிக் அமைன்களைத் தாழ்வெப்பநிலையில் (0 – 5 °C) பரிகரித்துத் தயாரிக்கப்படும். இவ்வெப்பநிலைகளிலும் ஈரசோனியம் உப்புக்கள் மெதுவாகப் பிரிகையடைவதனால், ஏதாவது விருப்பமான தாக்கத்திற்கு ஈரசோனியம் உப்புகளின் கரைசல்கள் தயாரித்தவுடன் பயன்படுத்தப்படும்.

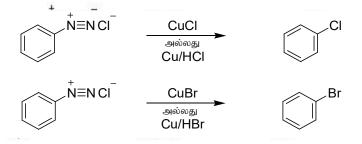

ஈரசோனியம் உப்புகள் பெருமளவு எண்ணிக்கைத் தாக்கங்களில் ஈடுபடும். அவை இரு வகுப்பு களாகப் பிரிக்கப்படலாம். ஈரசோனியம் கூட்டத்தை (N_2^+) வேறு அணுவினால் அல்லது கூட்டத் தினால் **பிரதியீடு** செய்தல்; ஈரசோனியம் அயன் இலத்திரனாடியாகத் தொழிற்பட்டு விளைபொருளில் நைதரசனை வைத்திருக்கும் **இணைப்புத்** தாக்கம்.

4.3.1 ஈரசோனியம் கூட்டம் வேறு அணுவினால் அல்லது ஒரு கூட்டத்தினால் பிரதியிடப்படும் தாக்கங்கள்

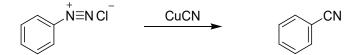
அனிலீனிலிருந்து ஆரம்பித்து வெவ்வேறு வகுப்புகள் அரோமற்றி சேர்வைகளைத் தயாரிக்க, ஈரசோனியம் உப்புகளிலிருந்து நைதரசனை வேறொரு அணுவினால் அல்லது கூட்டத்தினால் பிரதியீடு செய்யும் தாக்கங்கள் உதவுகின்றன.


4.3.1.1 நீருடன் ஈரசோனியம் உப்புகளின் தாக்கம்

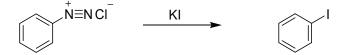
ஈரசோனியம் உப்புகளின் நீர்க்கரைசல்கள் வெப்பமேற்றப்படும்பொழுது பீனோல்கள் உருவாகின்றன.


4.3.1.2 உபபொசுபரசு அமிலத்துடன் (H₃PO₂) ஈரசோனியம் உப்புகளின் தாக்கம்

ஈரசோனியம் உப்புக்களை உபபொசுபரசு அமிலத்துடன் (H₃PO₂) பரிகரிக்கும்பொழுது, ஈரசோனியம் கூட்டம் ஒரு H அணுவினால் பிரதியீடு செய்யப்படும்.

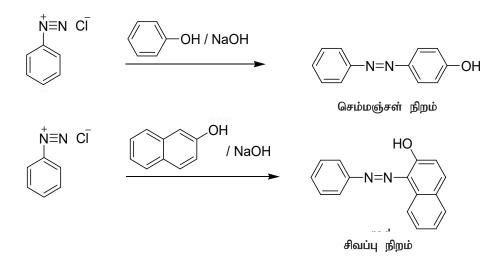

4.3.1.3 CuCl, CuBr என்பனவற்றுடன் ஈரசோனியம் உப்புகளின் தாக்கம்

CuCl அல்லது CuBr உடன் ஈரசோனியம் உப்புகளைத் தாக்கமுறவிடும்பொழுது, ஒத்த அரோமற்றிக்கு ஏலைட்டு உருவாகும். இத்தாக்கத்தை Cu(I) ஏலைட்டிற்குப் பதிலாகச் செப்புத்தூள், ஐதரசன் ஏலைட்டு (Cu/HCl அல்லது HBr) என்பவற்றுடன் நிகழ்த்தலாம்.


4.3.1.4 CuCN உடன் ஈரசோனியம் உப்புகளின் தாக்கம்

ஈரசோனியம் உப்புகளை CuCN உடன் தாக்கமுறவிடும்பொழுது, நைதரசன் ஆனது CN கூட்டத்தினால் பிரதியீடு செய்யப்படும்.

4.3.1.5 KI உடன் ஈரசோனியம் உப்புகளின் தாக்கம்

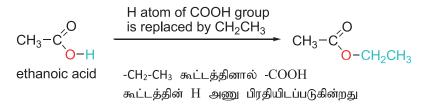

ஈரசோனியம் உப்புகளை KI உடன் தாக்கமுறவிடும்பொழுது, ஈரசோனியம் கூட்டம் I இனால் பிரதியீடு செய்யப்படும்.

க.பொ.த. (உ	_/த)	இரசாயனம்:	அலகு	10	நைதரசனைக்	கொண்டுள்ள	சேதனச்	சேர்வைகள்
------------	------	-----------	------	----	-----------	-----------	--------	-----------

4.3.2 ஈரசோனியம் அயன் இலத்திரன்நாடியாகத் தொழிழ்படும் தாக்கங்கள்

ஏரைல் ஈரசோனியம் அயன்களில் N இல் நேரேற்றம் காணப்படுவதனால் இலத்திரன் நாடியாகத் தொழிற்படலாம். இவை பீனோல்களுடன் கார நிபந்தனைகளில் தாக்கமுறுகின்றன. பென்சீன் ஈரசோனியம் குளோரைட்டு NaOH நீர்க்கரைசல் முன்னிலையில் பீனோலுடன் தாக்கமுற்று ஒரு செம்மஞ்சள் நிறச் சேர்வையையும், β - நப்தோலுடன் (2 - நப்தோல்) NaOH நீர்க்கரைசல் முன்னிலையில் தாக்கமுற்று ஒரு சிவப்பு நிறச் சேர்வையையும் தரும்.

உசாத்துணை நூல்கள்:


Morrison, R. T and Boyd, R. N. (2010) Organic Chemistry: Pearson.

Solomons, T. W. G. and Fryhle C. B. (2011) Organic Chemistry: John Wiley and Sons Inc.

பிற்சேர்க்கை

இப்போது நாங்கள் எசுத்தர்கள், அமிலக் குளோரைட்டுகள் மற்றும் ஏமைட்டுகள் ஆகிய காபொட்சிலிக் அமிலத்தின் பெறுதிகளை பெயரிடுவது தொடர்பாக தெரிந்து கொள்வோம். எசுத்தர்கள் காபொட்சிலிக் அமிலத்தின் -COOH கூட்டத்தின் H அணுவை அற்கையில் கூட்டத்தினால் பிரதியிடுவதன் மூலம் பெறப்படுவதாகக் கருதலாம். எனவே எசுத்தர்களின் பெயரில் காபொட்சிலிக் அமிலத்தின் பெயர் உள்ளடக்கப்பட வேண்டும் (பிற்சேர்க்கை —oic acid ஆனது —oate எனப் பிரதியிடப்படும்) என்பதுடன் -COOH கூட்டத்தின் H அணுவைப் பிரதியீடு செய்த அற்கையில் கூட்டத்தின் பெயரும் எழுதப்படவேண்டும்.

கீழ்த்தரப்படும் எளிய உதாரணத்தை நோக்குவோம்.

இந்த உதாரணத்தில் ethanoic acid இன் -COOH கூட்டத்தின் H அணுவானது -ethyl கூட்டத்தினால் பிரதியிடப்படுகின்றது. இதன் பெயர் பின்வருமாறு தருவிக்கப்படும்.

தொடர்புடைய காபொட்சிலிக் அமிலத்தின் பெயரின் பிற்சேர்கையான —oic acid ஆனது —oate ஆகப் பிரதியிடப்படும். (உ-ம் :- ethanoic acid ஆனது ethanoate ஆக மாற்றப்படும்.

-COOH கூட்டத்தின் H அணுவைப் பிரதியீடு செய்த அற்கையில் கூட்டத்தின் பெயர் முன்னால் சிறிய இடைவெளியுடன் இடப்படும். இந்த உதாரணத்தில் இது ethyl ஆகும். எனவே இதன் IUPAC பெயர் ஆனது ethyl ethanoate என எழுதப்படும்.

மேலும் சில உதாரணங்களை நோக்குவோம்.

படிகள்	$CH_3 CH_3 CH_2 CH_2 CH_2 CH_3 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2$	$HO-CH_2-C^2 \equiv C-CO_2CH_3$
நீண்ட காபன் சங்கிலி	5C அணுக்கள் - pent	4C அணுக்கள் - but
கூடிய முன்னுரிமை உடைய தொழிற்பாட்டுக் கூட்டம் மற்றும் இதன் அமைவிடம்	oate	oate
இரட்டை / மும்மைப்பிணைப்பு, அமைவிடத்துடன்	none	2-yne
தலைமை ஐதரோக்காபன்	pentane	but-2-yne
அமிலத்தில் இணைக்கப்பட்டிருக்கும் பிரதியீடு, காணப்படும் இடத்துடன்.	3-oxo, 4-methyl	4-hydroxy
-COOH கூட்டத்தின் H அணுவைப் பிரதியீடு செய்திருக்கும் அற்கையில் கூட்டத்தின் பெயர்	ethyl	methyl
IUPAC பெயர்	ethyl 4-methyl-3-oxopentanoate	methyl 4-hydroxybut-2-ynoate

அமில ஏலைட்டுகளுக்கு சில உதாரணங்களை நோக்குவோம். இவற்றைப் பெயரிடும் போது, பொருத்தமான காபொட்சிலிக் அமிலத்தின் முடிவு -oic acid ஆனது -oylhalide ஆகப் பிரதியிடப்படும்.

படிகள்	CH ₃ ⁵ CH ₃ CHCCH ₂ COCI U O	⁵ CH _{3 2} ² HO−CH−C≡C−COCI
நீண்ட காபன் சங்கிலி	5C atoms - pent	5C atoms - pent
கூடிய முன்னுரிமை உடைய தொழிற்பாட்டுக் கூட்டம் மற்றும் இதன் அமைவிடம்	oyl chloride	oyl chloride
இரட்டை / மும்மைப்பிணைப்பு, அமைவிடத்துடன்	none	2-yne
தலைமை ஐதரோக்காபன்	pentane	pent-2-yne (2-pentyne)
அமிலத்தில் இணைக்கப்பட்டிருக்கும் பிரதியீடு, காணப்படும் இடத்துடன்.	3-oxo, 4-methyl	4-hydroxy
IUPAC பெயர்	4-methyl-3-oxopentanoyl chloride	4-hydroxypent-2-ynoyl chloride 4-hydroxy-2-pentynoyl chloride

ஏமைடுகளுக்கு சில உதாரணங்களை நோக்குவோம். இவற்றைப் பெயரிடும் போது, பொருத்தமான காபொட்சிலிக் அமிலத்தின் முடிவு -oic acid ஆனது -amide ஆகப் பிரதியிடப்படும்.

படிகள்	CH ₃ ⁵ CH ⁴ CH ² CH ¹ CH ¹ CONH ₂ OH	$HO\overset{5}{\overset{-}{C}H_{3}}HO\overset{2}{\overset{-}{C}}-\overset{1}{\overset{-}{C}}ONH_{2}$
நீண்ட காபன் சங்கிலி	5C atoms - pent	5C atoms - pent
கூடிய முன்னுரிமை உடைய தொழிற்பாட்டுக் கூட்டம் மற்றும் இதன் அமைவிடம்	amide	amide
இரட்டை / மும்மைப்பிணைப்பு, அமைவிடத்துடன்	none	2-yne
தலைமை ஐதரோக்காபன்	pentane	pent-2-yne (2-pentyne)
அமிலத்தில் இணைக்கப்பட்டிருக்கும் பிரதியீடு, காணப்படும் இடத்துடன்.	3-hydroxy, 4-methyl	4-hydroxy, 4-methyl
IUPAC பெயர்	3-hydroxy-4-methylhexanamide	4-hydroxy-4-methylpent-2- ynamide 4-hydroxy-4-methyl-2- pentynamide